Table of Contents

Revision History... iv
Notices... v
Points of Contact... vi

Chapter 1. Overview.. 1

OpenFlex Data24 Overview... 2
Design Details... 3
 LEDs.. 4
 Servicing Features... 7
List of Compatible Devices... 7
Electrical Specifications.. 8
Environmental Specifications.. 8
Mechanical Specifications... 8
List of CRUs... 9
Rack Requirements.. 11
Space Requirements.. 12
Supported SKUs.. 12

Chapter 2. Components... 14

Chassis... 15
 Chassis Specifications.. 15
IO Module (IOM)... 16
 IOM Specifications.. 16
Drive Assembly.. 17
 Drive Assembly Specifications... 17
System Fan.. 18
 System Fan Specifications.. 18
Power Supply Unit (PSU).. 19
In-band Enclosure Management

Chapter 3. Support

Platform Details Pullout Tab
Chassis Replacement
Drive Assembly Replacement
System Fan Replacement
IO Module (IOM) Replacement
Power Supply Unit (PSU) Replacement
Rails Replacement

Chapter 4. Management

Open Composable API
Accessing the API
RESTful API
In-band Enclosure Management
NVMe-CLI
Discovering and Connecting to NVMe™ Devices on OpenFlex Data24
Downloading Firmware from the Support Portal
Enclosure Firmware Update
Drive Firmware Upgrade

Chapter 5. Configuration

Device Installation Order
Initial Network Configuration
Setting Static IPs on Ports
Port Setup Using Bash Script
Installing Standalone OCAPI for In-Band Management

Chapter 6. Safety
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic Discharge</td>
<td>89</td>
</tr>
<tr>
<td>Optimizing Location</td>
<td>89</td>
</tr>
<tr>
<td>Power Connections</td>
<td>89</td>
</tr>
<tr>
<td>Power Cords</td>
<td>89</td>
</tr>
<tr>
<td>Rackmountable Systems</td>
<td>90</td>
</tr>
<tr>
<td>Restricted Access Location</td>
<td>90</td>
</tr>
<tr>
<td>Safety and Service</td>
<td>90</td>
</tr>
<tr>
<td>Safety Warnings and Cautions</td>
<td>91</td>
</tr>
<tr>
<td>Chapter 7. Regulatory</td>
<td>92</td>
</tr>
<tr>
<td>Europe (CE Declaration of Conformity)</td>
<td>93</td>
</tr>
<tr>
<td>FCC Class A Notice</td>
<td>93</td>
</tr>
<tr>
<td>ICES-003 Class A Notice—Avis NMB-003, Classe A</td>
<td>93</td>
</tr>
<tr>
<td>Japanese Compliance Statement, Class A ITE</td>
<td>93</td>
</tr>
<tr>
<td>Taiwan Warning Label Statement, Class A ITE</td>
<td>94</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2020</td>
<td>1.0</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>
Notices

Western Digital Technologies, Inc. or its affiliates' (collectively "Western Digital") general policy does not recommend the use of its products in life support applications wherein a failure or malfunction of the product may directly threaten life or injury. Per Western Digital Terms and Conditions of Sale, the user of Western Digital products in life support applications assumes all risk of such use and indemnifies Western Digital against all damages.

This document is for information use only and is subject to change without prior notice. Western Digital assumes no responsibility for any errors that may appear in this document, nor for incidental or consequential damages resulting from the furnishing, performance or use of this material.

Absent a written agreement signed by Western Digital or its authorized representative to the contrary, Western Digital explicitly disclaims any express and implied warranties and indemnities of any kind that may, or could, be associated with this document and related material, and any user of this document or related material agrees to such disclaimer as a precondition to receipt and usage hereof.

Each user of this document or any product referred to herein expressly waives all guaranties and warranties of any kind associated with this document any related materials or such product, whether expressed or implied, including without limitation, any implied warranty of merchantability or fitness for a particular purpose or non-infringement. Each user of this document or any product referred to herein also expressly agrees Western Digital shall not be liable for any incidental, punitive, indirect, special, or consequential damages, including without limitation physical injury or death, property damage, lost data, loss of profits or costs of procurement of substitute goods, technology, or services, arising out of or related to this document, any related materials or any product referred to herein, regardless of whether such damages are based on tort, warranty, contract, or any other legal theory, even if advised of the possibility of such damages.

This document and its contents, including diagrams, schematics, methodology, work product, and intellectual property rights described in, associated with, or implied by this document, are the sole and exclusive property of Western Digital. No intellectual property license, express or implied, is granted by Western Digital associated with the document recipient's receipt, access and/or use of this document or the products referred to herein; Western Digital retains all rights hereto.

Western Digital, the Western Digital logo, and OpenFlex are registered trademarks or trademarks of Western Digital Corporation or its affiliates in the US and/or other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. The NVMe and NVMe-oF word marks are trademarks of NVM Express, Inc. All other marks are the property of their respective owners. Product specifications subject to change without notice. Pictures shown may vary from actual products. Not all products are available in all regions of the world.

Western Digital
5601 Great Oaks Parkway
San Jose, CA 95119

© 2020 Western Digital Corporation or its affiliates. All Rights Reserved.
Points of Contact

For further assistance with a Western Digital product, contact Western Digital Datacenter Platforms technical support. Please be prepared to provide the following information: part number (P/N), serial number (S/N), product name and/or model number, and a brief description of the issue.

Email:
support@wdc.com

Website:
https://portal.wdc.com/Support/s/

UK Import Representation Contact

Western Digital UK Limited Hamilton House, Regent Park, Kingston Road Leatherhead, Surrey KT22 7PL, GB, United Kingdom

Telephone: +44 1372 366000
Overview

In This Chapter:
- OpenFlex Data24 Overview.. 2
- Design Details.. 3
- List of Compatible Devices.. 7
- Electrical Specifications.. 8
- Environmental Specifications.. 8
- Mechanical Specifications... 8
- List of CRUs... 9
- Rack Requirements... 11
- Space Requirements... 12
- Supported SKUs... 12
1. Overview

1.1 OpenFlex Data24 Overview

The OpenFlex Data24 is a 2U rack mounted data storage enclosure built on the OpenFlex platform. OpenFlex is Western Digital’s architecture that supports Open Composable Infrastructure (OCI). The OpenFlex Data24 is a Just-a-Bunch-Of-Flash (JBOF) platform that leverages this OCI approach in the form of disaggregated data storage using NVMe-over-Fabrics (NVMe-oF™). NVMe-oF is a networked storage protocol that allows storage to be disaggregated from compute to make that storage widely available to multiple applications and hosts. By enabling applications to share a common pool of storage capacity, data can be easily shared between applications, or needed capacity can be allocated to an application regardless of location. Utilizing NVMe™ device-level performance, NVMe-oF promises to deliver the lowest end-to-end latency from application to shared storage. NVMe-oF enables composable infrastructures to deliver the data locality benefits of NVMe (low latency, high performance) while providing the agility and flexibility of sharing storage and compute.

Composable Infrastructure

An emerging category of datacenter infrastructure that seeks to disaggregate compute, storage, and networking fabric resources into shared resource pools that can be available for on-demand allocation (i.e., “composable”). Composability occurs at the software level, disaggregation occurs at the hardware level using NVMe-over-Fabric—will vastly improve compute and storage utilization, performance, and agility in the data center.

- 368TB Max Storage Capacity
- 100Gbps NVMe-oF
- 29.7 kg / 65.5 lbs.

OpenFlex

OpenFlex is Western Digital’s architecture that supports Open Composable Infrastructure through storage disaggregation – both disk and flash natively attached to a scalable fabric. OpenFlex does not rule out multiple fabrics, but whenever possible, Ethernet will be used as a unifying connect for both flash and disk because of its broad applicability and availability.

- 200V - 240V Input Voltages
- 2U Form Factor

Open Composable API

Western Digital’s Open Composable API is a REST interface designed for data center composability. It builds upon existing industry standards utilizing the best features of those standards as well as practices from proprietary management protocols.

- Dual 2000W PSUs
- Operational Temperature: 10°C to 35°C
On the front of the OpenFlex Data24 there are the 24 Small Form Factor (SFF) drive slots, and the enclosure status LEDs. Each drive is individually removable/serviceable. Below each drive slot there are status and activity LEDs embedded in the chassis. For more details, review the LEDs (page 4) section.

The rear of the platform contains the Power Supply Units (PSUs), and IO Modules (IOMs). The System Fans are accessible from the top of the unit via a latch cover which can be accessed by extending the unit out of the rack. All of these components are hot-swappable and do not require tools to replace.

The enclosure measures 450 mm/17.72 in. wide by 711.2 mm/28 in. long. It’s height is 90 mm/3.54 in. or 2U.
1.2.1 LEDs

Enclosure LEDs

![Enclosure LEDs](image)

Figure 2: Enclosure LEDs

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Color</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>White</td>
<td>Blink @ 1 Hz: Blinks only when Identification has been activated. Will blink when any component is identified, e.g. Fans, PSUs, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off: Enclosure not being identified/located</td>
</tr>
<tr>
<td>Power</td>
<td>Green</td>
<td>Blink @ 1Hz: Enclosure is booting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3Hz Quick Flash: Enclosure is in standby mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid: Enclosure is powered on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off: Enclosure is powered off</td>
</tr>
<tr>
<td>Service State</td>
<td>Blue</td>
<td>Solid: Enclosure is serviceable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off: Enclosure is not serviceable</td>
</tr>
<tr>
<td>Fault</td>
<td>Amber</td>
<td>Solid: Enclosure has a fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off: Enclosure has no fault</td>
</tr>
</tbody>
</table>
1. Overview

1.2 Design Details

Power Supply Unit (PSU) LED

Figure 3: Power Supply Unit (PSU) LED

![Power Supply Unit (PSU) LED](image)

Table 2: Power Supply Unit (PSU) LED Flash Patterns

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Color</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-function LED</td>
<td>Green</td>
<td>Solid: PSU is on and reporting no faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinking @ 2Hz: PSU in firmware update mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinking @ 3Hz: PSU is in Low Power Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off: PSU is disconnected from power</td>
</tr>
<tr>
<td>Amber</td>
<td></td>
<td>Solid: PSU is disconnected from power or critical fault causing a shutdown failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinking @ 0.5Hz: PSU reporting warnings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off: PSU is reporting no faults</td>
</tr>
</tbody>
</table>

System Fan LED

Figure 4: System Fan LED

![System Fan LED](image)

Table 3: System Fan LED Flash Patterns

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Color</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>Amber</td>
<td>Solid: Critical Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinking @ 2 Hz: Fan is reporting a fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off: Fan is on and reporting no faults</td>
</tr>
</tbody>
</table>
Drive Assembly LEDs

Figure 5: Drive Assembly LEDs

![Drive Assembly LEDs](image)

Power On

Device Fault

Table 4: Drive Assembly LED Flash Patterns

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Color/Number</th>
<th>Behavior</th>
</tr>
</thead>
</table>
| Status | Green/Amar | **Green:** Device is Powered On
| | | **Flashing** Activity |
| | | **Amber:** Device has fault |
| | | **Off:** Device is Powered Down |

IO Module (IOM) LED

Figure 6: IO Module (IOM) LED

![IO Module (IOM) LED](image)

Table 5: IOM LED Flash Patterns

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Color/Number</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJ45 Management Port</td>
<td>Green</td>
<td>Off: No Connection</td>
</tr>
<tr>
<td>Ethernet Link/Activity</td>
<td></td>
<td>Solid: Connected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blink: Activity</td>
</tr>
<tr>
<td>RJ45 Management Port</td>
<td>Green</td>
<td>Off: Operating at 10 Mbps</td>
</tr>
<tr>
<td>Port Ethernet Speed</td>
<td></td>
<td>Solid: Operating at 100 Mbps</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Off: Operating at 10 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid: Operating at 1Gbps</td>
</tr>
<tr>
<td>QSF28 LED</td>
<td></td>
<td>Green Blinking: Activity</td>
</tr>
<tr>
<td>1 - Ethernet Port 1</td>
<td></td>
<td>Off: No Activity</td>
</tr>
<tr>
<td>2 - Ethernet Port 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Not Used)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - Firmware State</td>
<td></td>
<td>Amber: Boot Sequence Started or Action Required</td>
</tr>
<tr>
<td>4 - Hardware and</td>
<td></td>
<td>Green: Firmware Up with No Errors</td>
</tr>
<tr>
<td>Management State</td>
<td></td>
<td>Green: Operational</td>
</tr>
<tr>
<td>2 (not used)</td>
<td></td>
<td>Off: Off</td>
</tr>
</tbody>
</table>
1. Overview

1.3 List of Compatible Devices

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Color/Number</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Green</td>
<td>Solid: IOM is powered on
Off: IOM is powered off</td>
</tr>
<tr>
<td>Service State</td>
<td>Blue</td>
<td>Solid: IOM is serviceable
Off: IOM is not serviceable</td>
</tr>
<tr>
<td>Fault</td>
<td>Amber</td>
<td>Solid: Enclosure has a fault
Off: IOM has no fault</td>
</tr>
</tbody>
</table>

1.2.2 Servicing Features

Toolless Servicing

All internal system components can be serviced without any additional tools.

All **System Fans** can be removed via an access panel on the top of the system. Each fan has a housing that can be used to safely remove it during servicing.

Power Supply Unit (PSU) and **IO Module (IOM)** can be accessed from the rear, and have toolless latching mechanisms.

All **Drive Assembly** can all be hotswapped from the cold-aisle using built-in drive carrier latches.

1.3 List of Compatible Devices

Table 6: Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Volume</th>
<th>Max Bandwidth</th>
<th>Drive Writes</th>
<th>Encryption</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenFlex Data24 CRU Drive w/ Carrier SN840</td>
<td>1.6 TB</td>
<td>3.3GB/s</td>
<td>RI-3DW/D</td>
<td>SE</td>
<td>1EX2708</td>
</tr>
<tr>
<td>OpenFlex Data24 CRU Drive w/ Carrier SN840</td>
<td>1.92 TB</td>
<td>3.3GB/s</td>
<td>RI-1DW/D</td>
<td>SE</td>
<td>1EX2753</td>
</tr>
<tr>
<td>OpenFlex Data24 CRU Drive w/ Carrier SN840</td>
<td>3.2 TB</td>
<td>3.3GB/s</td>
<td>RI-3DW/D</td>
<td>SE</td>
<td>1EX2754</td>
</tr>
<tr>
<td>OpenFlex Data24 CRU Drive w/ Carrier SN840</td>
<td>3.84 TB</td>
<td>3.3GB/s</td>
<td>RI-1DW/D</td>
<td>SE</td>
<td>1EX2706</td>
</tr>
<tr>
<td>OpenFlex Data24 CRU Drive w/ Carrier SN840</td>
<td>7.68 TB</td>
<td>3.3 GB/s</td>
<td>RI-1DW/D</td>
<td>SE</td>
<td>1EX2707</td>
</tr>
<tr>
<td>OpenFlex Data24 CRU Drive w/ Carrier SN840</td>
<td>15.36 TB</td>
<td>3.3 GB/s</td>
<td>RI-1DW/D</td>
<td>SE</td>
<td>1EX2709</td>
</tr>
</tbody>
</table>

2. Sequential read bandwidth, 64KiB block size. Based on internal testing. Performance will vary by capacity point, or with changes in useable capacity. All measurements are in full sustained mode and are peak values. Subject to change.
1.4 Electrical Specifications

Table 7: Electrical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Power Consumption</td>
<td>2000W</td>
</tr>
<tr>
<td>Typical Power Consumption</td>
<td>~410 W</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>200V - 240V</td>
</tr>
<tr>
<td>PSU Connector Type</td>
<td>C14</td>
</tr>
<tr>
<td>Inrush Current Maximum (per PSU)</td>
<td>AC line inrush current shall not exceed 40A peak, for up to one-quarter of the AC cycle after which, the input current should be no more than the specified maximum input current.</td>
</tr>
<tr>
<td>PSU Efficiency</td>
<td>80 Plus Platinum</td>
</tr>
</tbody>
</table>

1.5 Environmental Specifications

Table 8: Environmental Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Non-Operational</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>5°C to 45°C</td>
<td>10°C to 35°C</td>
</tr>
<tr>
<td>Temperature Gradient</td>
<td>30°C/hr Maximum</td>
<td>5°C per 15 minutes</td>
</tr>
<tr>
<td>Temperature De-rating</td>
<td>1°C per 300m above 3000m</td>
<td>1°C per 300m above 900m</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5-95% Non-Condensing</td>
<td>8-80% Non-Condensing</td>
</tr>
<tr>
<td>Relative Humidity Gradient</td>
<td>30% per hour maximum</td>
<td>30% per hour maximum</td>
</tr>
<tr>
<td>Altitude</td>
<td>-300m to 12,000m / -984 ft. to 39,370 ft</td>
<td>-300m to 3048m / -984 ft. to 10,000 ft.</td>
</tr>
<tr>
<td>Cooling</td>
<td>N/A</td>
<td>5 Dual Rotor System Fans (N+1 Supported)</td>
</tr>
</tbody>
</table>

1.6 Mechanical Specifications

2. Sequential read bandwidth, 64KiB block size. Based on internal testing. Performance will vary by capacity point, or with changes in useable capacity. All measurements are in full sustained mode and are peak values. Subject to change.
Table 9: Mechanical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Non-Operational</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock</td>
<td>10G, 11ms half sine; 3 positive and 3 negative pulses in X, Y, and Z axes.</td>
<td>5G, 11ms half sine; positive and 3 negative pulses in X, Y, and Z axes.</td>
</tr>
<tr>
<td>Vibration</td>
<td>Linear Random: 0.54 Grms; 5-500 Hz; 10 minutes each axis in X, Y, and Z.</td>
<td>Linear Random: 0.15 Grms; 5-500 Hz 10 minutes each axis in X, Y and Z.</td>
</tr>
<tr>
<td></td>
<td>Linear Random: 0.54 Grms; 1-200 Hz; 60 minutes in Z axis.</td>
<td>Swept Sine: 0.10 G; 0 - peak swept sine; 5 - 500Hz; 1 complete sweep</td>
</tr>
<tr>
<td></td>
<td>@ 1/2 octave per minute</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>29.7 kg / 65.5 lbs.</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>W: 450 mm x L: 711.2 mm x H: 90 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W: 17.72 in. x L: 28 in. x H: 3.54 in.</td>
<td></td>
</tr>
<tr>
<td>Required Rack Depth</td>
<td>1000 mm (39.4 in.) of usable rack space, door to door</td>
<td></td>
</tr>
<tr>
<td>Required Rack Width</td>
<td>450mm (17.72in.) with 465mm (18.31in.) ± 1.5mm nominal hole spacing. See EIA-310 Rack Standard</td>
<td></td>
</tr>
<tr>
<td>Rack Units (U)</td>
<td>2U</td>
<td></td>
</tr>
<tr>
<td>Vertical Rack Rail Spacing</td>
<td>700 mm – 850 mm / 28.26 in. – 33.46 in.</td>
<td></td>
</tr>
</tbody>
</table>

1.7 List of CRUs

Table 10: List of Replaceable Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Part Number</th>
<th>Package Dimensions</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1EX2704</td>
<td>OpenFlex Data24 CRU Chassis</td>
<td>W: 927.1 mm x L: 609.6 mm x H: 254 mm</td>
<td>22.2 kg / 49 lbs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: 36.5 in x L: 24 in x H: 10 in</td>
<td></td>
</tr>
<tr>
<td>1EX1530</td>
<td>Platform CRU Power Cord 3m C13-C14 18AWG</td>
<td>W: 107.9 mm x L: 158.7 mm x H: 311.1 mm</td>
<td>0.81 kg / 1.8 lbs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: 4.25 in x L: 6.25 in x H: 12.25 in</td>
<td></td>
</tr>
<tr>
<td>1EX2698</td>
<td>OpenFlex Data24 CRU PSU 2000W</td>
<td>W: 107.9 mm x L: 158.7 mm x H: 311.1 mm</td>
<td>1.3 kg / 2.9 lbs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: 4.25 in x L: 6.25 in x H: 12.25 in</td>
<td></td>
</tr>
<tr>
<td>1EX2699</td>
<td>OpenFlex Data24 CRU System Fan</td>
<td>W: 177.8 mm x L: 184.1 mm x H: 133.3 mm</td>
<td>0.49 kg / 1.1 lbs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: 7 in x L: 7.25 in x H: 5.25 in</td>
<td></td>
</tr>
<tr>
<td>Component</td>
<td>Part Number</td>
<td>Package Dimensions</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>----------------------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 1EX2701 | OpenFlex Data24 CRU IO Module w/3 Add-In Cards | W: 292.1 mm x L: 469.9 mm x H: 203.2 mm
W: 11.5 in x L: 18.5 in x H: 8 in | 3.6 kg / 8 lbs |
| 1EX2702 | OpenFlex Data24 CRU Rail Kit | W: 990.6 mm x L: 812.8 mm x H: 50.8 mm
W: 9 in x L: 32 in x H: 2 in | 5.4 kg / 12 lbs |
| 1EX2705 | Platform CRU Cable QSFP28 to QSFP28 3m | W: 261.6 mm x L: 373.8 mm x H: 116.8 mm
W: 10.3 in x L: 13.3 in x H: 4.6 in | 0.49 kg / 1.1 lbs |
| 1EX2744 | OpenFlex Data24 CRU Rack Ear Kit | W: 261.6 mm x L: 373.8 mm x H: 116.8 mm
W: 10.3 in x L: 13.3 in x H: 4.6 in | 0.49 kg / 1.1 lbs |
| 1EX2745 | OpenFlex Data24 CRU Drive Carrier w/o Interposer | W: 261.6 mm x L: 373.8 mm x H: 116.8 mm
W: 10.3 in x L: 13.3 in x H: 4.6 in | 0.22 kg / 0.5 lbs |
| 1EX2703 | OpenFlex Data24 CRU Drive Carrier Blank | W: 261.6 mm x L: 373.8 mm x H: 116.8 mm
W: 10.3 in x L: 13.3 in x H: 4.6 in | 0.72 kg / 1.1 lbs |
| 1EX2708 | OpenFlex Data24 CRU Drive w/Carrier SN840 1.6TB RI-3DW/D SE | W: 170.1 mm x L: 294.6 mm x H: 76.2 mm
W: 6.7 in x L: 11.6 in x H: 3 in | 0.49 kg / 1.1 lbs |
| 1EX2753 | OpenFlex Data24 CRU Drive w/Carrier SN840 1.92TB RI-1DW/D SE | W: 170.1 mm x L: 294.6 mm x H: 76.2 mm
W: 170.1 mm x L: 294.6 mm x H: 76.2 mm
W: 170.1 mm x L: 294.6 mm x H: 76.2 mm | 0.49 kg / 1.1 lbs |
| 1EX2754 | OpenFlex Data24 CRU Drive w/Carrier SN840 3.2TB RI-3DW/D SE | W: 170.1 mm x L: 294.6 mm x H: 76.2 mm
W: 6.7 in x L: 11.6 in x H: 3 in | 0.49 kg / 1.1 lbs |
| 1EX2706 | OpenFlex Data24 CRU Drive w/Carrier SN840 3.84TB RI-1DW/D SE | W: 170.1 mm x L: 294.6 mm x H: 76.2 mm
W: 6.7 in x L: 11.6 in x H: 3 in | 0.49 kg / 1.1 lbs |
| 1EX2707 | OpenFlex Data24 CRU Drive w/Carrier SN840 7.68TB RI-1DW/D SE | W: 170.1 mm x L: 294.6 mm x H: 76.2 mm
W: 6.7 in x L: 11.6 in x H: 3 in | 0.49 kg / 1.1 lbs |
| 1EX2709 | OpenFlex Data24 CRU Drive w/Carrier SN840 15.36TB RI-1DW/D SE | W: 170.1 mm x L: 294.6 mm x H: 76.2 mm
W: 6.7 in x L: 11.6 in x H: 3 in | 0.49 kg / 1.1 lbs |
| 1EX2794 | OpenFlex Data24 CRU Drive w/Carrier SN840 6.4TB RI-3DW/D SE | W: 170.1 mm x L: 294.6 mm x H: 76.2 mm | 0.49 kg / 1.1 lbs |
1.8 Rack Requirements

The OpenFlex Data24 is designed to be installed into a rack that meets the EIA-310 standard with a minimum of 1000 mm (39.4 in.) of usable rack space, door to door. The vertical rack rails must be set between 700 mm – 850 mm / 28.26 in. – 33.46 in. to support the enclosure. It requires 2U of rack space, and it should be installed into the rack at the lowest possible U height to keep the load on the rack balanced.

Table 11: Required Rack Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rack Depth</td>
<td>1000 mm (39.4 in.) of usable rack space, door to door</td>
</tr>
<tr>
<td>Rack Width</td>
<td>450mm (17.72in.) with 465mm (18.31in.) ± 1.5mm nominal hole spacing. See EIA-310 Rack Standard</td>
</tr>
<tr>
<td>Rack Units (U)</td>
<td>2U</td>
</tr>
<tr>
<td>Vertical Rack Rail Spacing</td>
<td>700 mm – 850 mm / 28.26 in. – 33.46 in.</td>
</tr>
<tr>
<td>Static Load Rating</td>
<td>Rack meets ISTA 3E or 3B test requirements and regulations when mounted to the shipping pallet</td>
</tr>
<tr>
<td>Dynamic Load Rating</td>
<td>Rack meets ISTA 3E or 3B test requirements and regulations when mounted to the shipping pallet</td>
</tr>
</tbody>
</table>
1.9 Space Requirements

The installation of the OpenFlex Data24 will require enough space in front of the rack for two people to perform a safe installation. The recommended forward clearance is 914.4 mm / 36 in. from the front of the rack and 609.6 mm / 24 in. on both sides of the enclosure. It is also recommended to make considerations for any carts or lift equipment that might be used to perform the installation.

The servicing of the enclosure requires one person and a minimum of 711 mm / 27.99 in. of space in front of the rack to allow enough clearance to remove an enclosure. See the following diagram for details.

1.10 Supported SKUs

The following table lists the versions of this Western Digital product that are supported by this document.

<table>
<thead>
<tr>
<th>Component</th>
<th>Capacity</th>
<th>SKU</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenFlex Data24-12 SN840 6x100GbE nTAA PCIe RI-1DW/D SE</td>
<td>184.32TB</td>
<td>1ES2033</td>
</tr>
<tr>
<td>OpenFlex Data24-24 SN840 6x100GbE nTAA PCIe RI-3DW/D SE</td>
<td>76.8TB</td>
<td>1ES1986</td>
</tr>
<tr>
<td>OpenFlex Data24-24 SN840 6x100GbE nTAA PCIe RI-3DW/D SE</td>
<td>153.6TB</td>
<td>1ES2040</td>
</tr>
<tr>
<td>OpenFlex Data24-24 SN840 6x100GbE nTAA PCIe RI-1DW/D SE</td>
<td>92.16TB</td>
<td>1ES1913</td>
</tr>
<tr>
<td>OpenFlex Data24-24 SN840 6x100GbE nTAA PCIe RI-1DW/D SE</td>
<td>184.32TB</td>
<td>1ES1915</td>
</tr>
<tr>
<td>OpenFlex Data24-24 SN840 6x100GbE nTAA PCIe RI-1DW/D SE</td>
<td>368.64TB</td>
<td>1ES1914</td>
</tr>
</tbody>
</table>

3. The weight of the enclosure during installation will vary, depending on the number of devices and blanks contained in the OpenFlex Data24. In some situations, carts or lift equipment may be required.
1. Overview

1.10 Supported SKUs

<table>
<thead>
<tr>
<th>Component</th>
<th>Capacity</th>
<th>SKU</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenFlex Data24-12 SN840 6x100GbE nTAA PCIe RI-1DW/D SE</td>
<td>46.08TB</td>
<td>1ES2025</td>
</tr>
<tr>
<td>OpenFlex Data24-12 SN840 6x100GbE nTAA PCIe RI-1DW/D SE</td>
<td>92.16TB</td>
<td>1ES2026</td>
</tr>
<tr>
<td>OpenFlex Data24-12 SN840 6x100GbE nTAA PCIe RI-1DW/D SE</td>
<td>23.04 TB</td>
<td>1ES2027</td>
</tr>
</tbody>
</table>
Components

In This Chapter:
- Chassis.. 15
- IO Module (IOM)... 16
- Drive Assembly.. 17
- System Fan.. 18
- Power Supply Unit (PSU)................................. 19
- Rails... 20
2. Components

2.1 Chassis

The chassis is the primary housing that contains and connects all of the system components. All of the drives are located at the front in the drive bay, and the rear houses the IO Modules, PSUs, and cabling. There is a removable compartment cover on the top of the chassis that allows access to the system fans.

2.1.1 Chassis Specifications

Table 13: Chassis Specification Summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>1EX2704</td>
</tr>
<tr>
<td>Hot Swappable?</td>
<td>No</td>
</tr>
<tr>
<td>Dimensions</td>
<td>W: 450 mm x L: 845mm x H: 90 mm</td>
</tr>
<tr>
<td></td>
<td>W: 17.72 in. x L: 33.27 in. x H: 3.54 in.</td>
</tr>
<tr>
<td>Weight</td>
<td>22.14 kg 48.81 lbs.</td>
</tr>
</tbody>
</table>
2.2 IO Module (IOM)

Each IOM provides system data connectivity through up to three QSFP28 cables per IOM, and supports cable lengths up to 5M. Out-of-Band Management (OOBM) features are accessed via an RJ45 port that supports a 10/100/1000 Ethernet connection. The IOM has three status LEDs that report OK status, Fault, and Service State. The IOM is hotswappable and easily removable by removing cables/connectors, loosening the single thumbscrew and pulling on the handle.

⚠️ Warning: It is important to remove the QSFP28 connectors and cables before unscrewing and lowering the handle. Lowering the handle while the cables are still installed can damage the internal components and the connector itself.

2.2.1 IOM Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>1EX2701</td>
</tr>
<tr>
<td>Number per Enclosure</td>
<td>2</td>
</tr>
<tr>
<td>Hot Swappable?</td>
<td>Yes</td>
</tr>
<tr>
<td>Service window</td>
<td>No Service Window</td>
</tr>
<tr>
<td>Dimensions</td>
<td>W: 169.69 mm x L: 392.77 mm x H: 83.41 mm</td>
</tr>
<tr>
<td></td>
<td>W: 3.28 in. x L: 15.46 in. x H: 6.68 in.</td>
</tr>
<tr>
<td>Connector Type</td>
<td>3 QSFP28 connectors and 1 RJ45 Mgmt Port</td>
</tr>
</tbody>
</table>
The drive assembly is comprised of 3 basic parts: the 2.5 in. SSD, the drive carrier, and the interposer card. The drive carrier houses the 2.5 in. drive and the interposer card and enables toolless installation and replacement. The drive assembly is available in many different volumes, encryption, and block sizes.

2.3.1 Drive Assembly Specifications

Table 15: Drive Assembly Specification Summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>Varies See list of compatible drives</td>
</tr>
<tr>
<td>Number per Enclosure</td>
<td>1-24</td>
</tr>
<tr>
<td>Hot Swappable?</td>
<td>Yes</td>
</tr>
<tr>
<td>Service window</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Dimensions</td>
<td>W: 20.46 mm × L: 211.80 mm × H: 80.38 mm</td>
</tr>
<tr>
<td></td>
<td>W: 0.81 in. × L: 3.16 in. × H: 8.34 in.</td>
</tr>
</tbody>
</table>
2.4 System Fan

The system fans provide the primary system cooling for the OpenFlex Data24. There are five fans total, and they are accessible from a latch cover on the top of the chassis. The system fans are hotswappable CRU components, and do not require any wiring. The plastic fan covers also have labels identifying each fan.

2.4.1 System Fan Specifications

Table 16: System Fan Specification Summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>1EX2699</td>
</tr>
<tr>
<td>Number per Enclosure</td>
<td>5</td>
</tr>
<tr>
<td>Hot Swappable?</td>
<td>Yes</td>
</tr>
<tr>
<td>Service window</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Dimensions</td>
<td>W: 76.33 mm x L: 63.07 mm x H: 67.60 mm</td>
</tr>
<tr>
<td></td>
<td>W: 3.01 in. x L: 2.48 in. x H: 2.66 in.</td>
</tr>
</tbody>
</table>
2.5 Power Supply Unit (PSU)

The Power Supply Units (PSUs) inside the OpenFlex Data24 are 2000W, 80 Plus Platinum efficiency rated, and operates within a 200 - 240 VAC voltage range. The PSUs are redundant and can be hotswapped one at a time. There must always be one PSU in operation for continuous usage during replacements of the PSUs.

2.5.1 PSU Specifications

Table 17: Power Supply Unit (PSU) Specification Summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>1EX2698</td>
</tr>
<tr>
<td>Number per Enclosure</td>
<td>2</td>
</tr>
<tr>
<td>Hot Swappable?</td>
<td>Yes</td>
</tr>
<tr>
<td>Service window</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Dimensions</td>
<td>W: 41 mm x L: 234.80 mm x H: 76.50 mm</td>
</tr>
<tr>
<td></td>
<td>W: 1.61 in. x L: 9.24 in. x H: 3.01 in.</td>
</tr>
<tr>
<td>Current Output</td>
<td>16A</td>
</tr>
<tr>
<td>Power Output</td>
<td>2000W Maximum</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>200V - 240V</td>
</tr>
<tr>
<td>80 PLUS Standard</td>
<td>Platinum</td>
</tr>
<tr>
<td>Connector Type</td>
<td>C14</td>
</tr>
</tbody>
</table>
2.6 Rails

The Rails included with the OpenFlex Data24 are 2U, shelf style rails with springloaded inner arms that enable easy installation.

2.6.1 Rails Specification

Table 18: Rails Specification Summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>1EX2702</td>
</tr>
<tr>
<td>Number per Enclosure</td>
<td>1 Pair</td>
</tr>
<tr>
<td>Hot Swappable?</td>
<td>No</td>
</tr>
<tr>
<td>Service window</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Support

In This Chapter:
- Platform Details Pullout Tab..........................22
- Chassis Replacement......................................22
- Drive Assembly Replacement.........................38
- System Fan Replacement.................................41
- IO Module (IOM) Replacement.........................48
- Power Supply Unit (PSU) Replacement..............53
3.1 Platform Details Pullout Tab

There is a small plastic tab that can be pulled out to show the vital system details such as the SKU number and serial numbers. The pullout tab is located on the front of the platform in the location shown in the following image.

Figure 13: Pullout Tab Location

3.2 Chassis Replacement

<table>
<thead>
<tr>
<th>Replacement Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel Required</td>
</tr>
<tr>
<td>Average Replacement Time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tool</th>
<th># Needed</th>
<th>Required vs. Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>T15 Torx Screwdriver</td>
<td>1</td>
<td>Required</td>
</tr>
<tr>
<td>Lift Equipment</td>
<td>1</td>
<td>Optional</td>
</tr>
<tr>
<td>ESD Mitigation Equipment (site specific)</td>
<td>1</td>
<td>Required</td>
</tr>
</tbody>
</table>

- ESD Sensitive
- Electric Shock
- Team Lift Required
3. Support

3.2 Chassis Replacement

Step 1: Unpack and inspect the new Chassis for damage.

a. Inspect the packaging that the Chassis replacement was shipped in and record any damage to the box. Large cuts, open boxes, and crushed corners should be reported.

b. Remove the Chassis from the packaging and verify that there is no damage to the Chassis. Dents, scratches, and broken parts should be reported. If major damage has occurred to the Chassis, DO NOT use the replacement part.

c. Store in a safe location until the Chassis is needed for installation.

Step 2: Disconnect the power and data cables from the enclosure.

a. Unclip the retention strap as shown in the following image.

Figure 14: Unclipping Cable Retention Strap (Generic PSU Shown)

b. Move to the rear of the rack and disconnect the power cables from each of the two Power Supply Unit (PSU).

Figure 15: Disconnect Power Cables

c. Disconnect the Ethernet Cable from the RJ45 Ethernet Management port.
3.2 Chassis Replacement

Figure 16: Disconnect RJ45 Ethernet Cables

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Disconnect the QSFP28 cables from all of the IOM ports.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 17: Disconnect QSFP28 Cables

| ![Image](image_url3) | ![Image](image_url4) |

Remember: It's important to return drives to their proper slot when reinstalling. Use a tracking methodology such as marking drive assemblies to be certain that drive assemblies removed by this procedure make it back to their correct slot number.

Step 3: Uninstall the Drive Assembly from the enclosure.

1. From the front of the rack, press the release button on the front of the Drive Assembly. The release handle will eject outward.
3. Support

3.2 Chassis Replacement

Figure 18: Drive Assembly Release Operation

- Use the release handle to pull the Drive Assembly out of the enclosure.

Figure 19: Uninstall Drive Assembly

Step 4: Uninstall each Drive Assembly in the same way the first was uninstalled.

Caution: The PSU must be replaced within 5 minutes.

Step 5: Uninstall the Power Supply Unit (PSU) from the enclosure.

- From the rear of the rack, grasp the ring handle with your index finger and use your thumb to press the latch release using a pinching motion.
3. Support

3.2 Chassis Replacement

Figure 20: Power Supply Unit (PSU) Release Latch Operation

b. Carefully pull the Power Supply Unit (PSU) out of the Power Supply Unit (PSU) slot.

Figure 21: Uninstall Power Supply Unit (PSU)

Step 6: Uninstall the remaining Power Supply Unit (PSU) in the same way the first was uninstalled.

Step 7: Uninstall the IO Module (IOM) from the enclosure.

a. Unlock the IO Module (IOM) by turning the thumbscrew counterclockwise until the screw threads are not engaged any longer. The location of the thumbscrew is shown in the following image. A screwdriver may be used if desired.
3. Support

3.2 Chassis Replacement

Figure 22: IO Module (IOM) Thumbscrew Operation

Figure 23: IO Module (IOM) Release Handle Operation

Figure 24: Uninstall IO Module (IOM)

b. Pull the release handle out until the IO Module (IOM) is unseated and can be removed from the IO Module (IOM) slot.

Step 8: Uninstall the remaining IO Module (IOM) in the same way the first was uninstalled.

Step 9: Uninstall the Chassis from the rack mounted rails.
a. From the front of the rack, using the T15 Torx screwdriver, loosen the two Torx captive screws that secure the Chassis to the rail. Repeat this step to loosen the two Torx captive screws that secure the Chassis to the remaining rail. The location of the captive screws are shown in the following image.

Figure 25: Rack Ear Captive Screw Location

b. Carefully pull the Chassis out of the rack. The chassis will slide out of the rails until the locking tabs on the side of the chassis engage and stop the chassis from being pulled out further.

c. Depress the locking tabs on the sides of the chassis to allow it to be removed from the rails.
3. Support
3.2 Chassis Replacement

Figure 26: Locking Tabs

Figure 27: Uninstall Chassis

Step 10: Install the Chassis onto the rack mounted rails.

d. Continue sliding the chassis out of the rack and ensure extra care is taken to support the weight of the Chassis when the Chassis is clear of the rack mount rails.
3. Support
3.2 Chassis Replacement

a. Carefully slide the Chassis onto the rails until the rack ears are flush with the mounts on the rails.

Figure 28: Chassis Installation

b. Using the T15 Torx screwdriver, tighten the two Torx captive screws to secure the Chassis to the rail. Repeat this step to secure the remaining rack mount to the remaining rail.
Step 11: Install the IO Module (IOM) into the enclosure.

a. From the rear of the rack, unlock the IO Module (IOM) by turning the thumbscrew counterclockwise until the screw threads are not engaged any longer. The location of the thumbscrew is shown in the following image.
b. Gently slide the IO Module (IOM) into the IO Module (IOM) slot until the release handle is engaged with the Chassis. When the handle lifts up slightly, it is an indicator that the release handle is engaged with the Chassis.
c. Press the release handle into the IO Module (IOM) and secure it in place by turning the thumbscrew clockwise until it is tight.

Figure 32: IO Module (IOM) Secure

d. Verify that the IO Module (IOM) is securely latched into the Chassis by pulling on the release handle and ensuring the IO Module (IOM) does not move when pulled. Reinstall the IO Module (IOM) if it is not securely installed into the Chassis.
Step 12: Install the remaining IO Module (IOM) in the same way the first was installed.

Step 13: Install the Power Supply Unit (PSU) into the enclosure.

a. Orient the Power Supply Unit (PSU) with the power port located on the top and insert it into the Power Supply Unit (PSU) slot. The location of the power port is shown in the following image.

Figure 33: Port Location

b. Verify that the Power Supply Unit (PSU) is fully seated and latched into the Power Supply Unit (PSU) slot by gently pulling on the handle.

Step 14: Install the remaining Power Supply Unit (PSU) in the same way the first was installed.

Step 15: Install the Drive Assembly into the enclosure.

a. Prepare the Drive Assembly for installation by pressing the release button on the front of the Drive Assembly. The release handle will eject outward.
3. Support
3.2 Chassis Replacement

Figure 35: Drive Assembly Release Operation

b. From the front of the rack, gently slide the Drive Assembly into the Drive Assembly slot until the release handle lifts up slightly, indicating that it is engaged with the Chassis.

Figure 36: Drive Assembly Latch Engaged

c. Rotate the release handle up and press it into the Drive Assembly to secure it into the slot. When it is fully installed the user will feel the handle snap and lock into place.
Step 16: Install the remaining Drive Assembly in the same way the first was installed.

Step 17: Connect the power and data cables to the enclosure.

a. Loop the PSU's retention clip around the power cable and pinch it until the clip catches and locks in place.

b. Slide the retention clip forward until it stops near the cable connector. Doing this will ensure that the retention clip functions properly in the event the cable is accidentally pulled.
c. Connect the Ethernet Cable into the Ethernet Management port.

Figure 40: Connecting RJ45 Ethernet Cable to Management Port

![Figure 40](image)

Figure 41: Connect QSFP28 Cables

![Figure 41](image)

d. Connect the QSFP28 cables into all of the IOM ports.

e. Move to the rear of the rack and connect the power cables into each of the two Power Supply Unit (PSU) power connectors.
3.3 Drive Assembly Replacement

Replacement Requirements

<table>
<thead>
<tr>
<th>Personnel Required</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Window</td>
<td>5 minutes</td>
</tr>
</tbody>
</table>

- ESD Sensitive

Step 1: Unpack and inspect the new Drive Assembly for damage.

Figure 42: Connect Power Cables

f. Wrap the power cable in the cable retention clip and cinch it so it securely holds the power cable in place.

Figure 43: Cinching Retention Strap (Generic PSU Shown)
3. Support
3.3 Drive Assembly Replacement

a. Inspect the packaging that the Drive Assembly replacement was shipped in and record any damage to the box. Large cuts, open boxes, and crushed corners should be reported.

b. Remove the Drive Assembly from the packaging and verify that there is no damage to the Drive Assembly. Dents, scratches, and broken parts should be reported. If major damage has occurred to the Drive Assembly, DO NOT use the replacement part.

c. Store in a safe location until the Drive Assembly is needed for installation.

Step 2: Uninstall the Drive Assembly from the enclosure.

a. From the front of the rack, press the release button on the front of the Drive Assembly. The release handle will eject outward.

b. Use the release handle to pull the Drive Assembly out of the enclosure.
Figure 45: Uninstall Drive Assembly

Step 3: Install the Drive Assembly into the enclosure.

a. Prepare the Drive Assembly for installation by pressing the release button on the front of the Drive Assembly. The release handle will eject outward.

Figure 46: Drive Assembly Release Operation

b. From the front of the rack, gently slide the Drive Assembly into the Drive Assembly slot until the release handle lifts up slightly, indicating that it is engaged with the Chassis.
3.4 System Fan Replacement

c. Rotate the release handle up and press it into the Drive Assembly to secure it into the slot. When it is fully installed the user will feel the handle snap and lock into place.

3.4 System Fan Replacement

<table>
<thead>
<tr>
<th>Replacement Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel Required</td>
</tr>
<tr>
<td>Service Window</td>
</tr>
</tbody>
</table>
3. Support

3.4 System Fan Replacement

<table>
<thead>
<tr>
<th>Tool</th>
<th># Needed</th>
<th>Required vs. Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>T15 Torx Screwdriver</td>
<td>1</td>
<td>Required</td>
</tr>
<tr>
<td>ESD Mitigation Equipment (site specific)</td>
<td>1</td>
<td>Required</td>
</tr>
</tbody>
</table>

- ESD Sensitive
- Electric Shock
- Fan Blade Danger

Step 1: Unpack and inspect the new System Fan for damage.

a. Inspect the packaging that the System Fan replacement was shipped in and record any damage to the box. Large cuts, open boxes, and crushed corners should be reported.

b. Remove the System Fan from the packaging and verify that there is no damage to the System Fan. Dents, scratches, and broken parts should be reported. If major damage has occurred to the System Fan, DO NOT use the replacement part.

c. Store in a safe location until the System Fan is needed for installation.

Step 2: Extend the platform out of the rack to access the System Fan bay.

a. From the front of the rack, using the T15 Torx screwdriver, loosen the two Torx captive screws that secure the Chassis to the rail. Repeat this step to loosen the two Torx captive screws that secure the Chassis to the remaining rail. The location of the captive screws are shown in the following image.

Figure 49: Rack Ear Captive Screw Location
b. Carefully slide the Chassis out of the rack until the System Fan bay is completely accessible and the locking tabs on the side of the chassis have stopped the OpenFlex Data24 and locked it in place. The System Fan bay accessibility is shown in the following image.

Figure 50: System Fan Bay Access

Step 3: Uninstall the System Fan from the enclosure.

a. Unlatch the System Fan bay cover by sliding both latches in towards the center of the Chassis until the cover is released and can rotated open on its hinges. The latch operation is shown in the following image.

Figure 51: System Fan Bay Cover Latch Location
b. Gain access to the System Fan bay by lifting the flexible label.

c. Grasp the System Fan firmly with your index finger and use your thumb to press the latch release using a pinching motion.
3. Support

3.4 System Fan Replacement

Figure 54: System Fan Latch Operation

Caution: The fan module must be replaced within 5 minutes.

Carefully pull the System Fan out of the System Fan slot.

Figure 55: Uninstall System Fan

Step 4: Install the System Fan into the enclosure.

a. Gain access to the System Fan bay by lifting the flexible Formex flap.
3.4 System Fan Replacement

b. Orient the System Fan with the module latch (and connector) on the right-hand side and insert it into the System Fan slot.

Figure 56: Flexible Label

Figure 57: System Fan Installation
c. Verify that the System Fan is fully seated and latched into the System Fan slot by gently pulling on the module.

d. Latch the System Fan bay cover by rotating the cover toward the Chassis and sliding both latches in towards the center of the Chassis until the cover engages with the Chassis.

Figure 59: System Fan Bay Cover Operation

e. Verify that the System Fan bay cover is securely latched into the Chassis by gently pulling up on the latches ensuring the System Fan bay cover does not move when pulled. Reinstall the System Fan bay cover if it is not securely installed onto the Chassis.

Step 5: Secure the Chassis to the rack rails.
3. Support
3.4 System Fan Replacement

a. Carefully slide the Chassis into the rack until the rack ears are flush with the mounts on the rails.

Figure 60: Seating the Chassis

b. Using the T15 Torx screwdriver, tighten the two Torx captive screws to secure the Chassis to the rail. Repeat this step to secure the remaining rack mount to the remaining rail.

Figure 61: Chassis Captive Screws
3.5 IO Module (IOM) Replacement

<table>
<thead>
<tr>
<th>Replacement Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel Required</td>
</tr>
<tr>
<td>Service Window</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tool</th>
<th># Needed</th>
<th>Required vs. Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philips head Screwdriver</td>
<td>1</td>
<td>Optional</td>
</tr>
</tbody>
</table>

- ESD Sensitive
- Electric Shock

Step 1: Unpack and inspect the new IO Module (IOM) for damage.
 a. Inspect the packaging that the IO Module (IOM) replacement was shipped in and record any damage to the box. Large cuts, open boxes, and crushed corners should be reported.
 b. Remove the IO Module (IOM) from the packaging and verify that there is no damage to the IO Module (IOM). Dents, scratches, and broken parts should be reported. If major damage has occurred to the IO Module (IOM), DO NOT use the replacement part.
 c. Store in a safe location until the IO Module (IOM) is needed for installation.

Step 2: Uninstall the IO Module (IOM) from the enclosure.
 a. Unlock the IO Module (IOM) by turning the thumbscrew counterclockwise until the screw threads are not engaged any longer. The location of the thumbscrew is shown in the following image. A screwdriver may be used if desired.

Figure 62: IO Module (IOM) Thumbscrew Operation

b. Pull the release handle out until the IO Module (IOM) is unseated and can be removed from the IO Module (IOM) slot.
Step 3: Install the IO Module (IOM) into the enclosure.

a. From the rear of the rack, unlock the IO Module (IOM) by turning the thumbscrew counterclockwise until the screw threads are not engaged any longer. The location of the thumbscrew is shown in the following image.
b. Gently slide the IO Module (IOM) into the IO Module (IOM) slot until the release handle is engaged with the Chassis. When the handle lifts up slightly, it is an indicator that the release handle is engaged with the Chassis.
c. Press the release handle into the IO Module (IOM) and secure it in place by turning the thumbscrew clockwise until it is tight.

Figure 67: IO Module (IOM) Secure

d. Verify that the IO Module (IOM) is securely latched into the Chassis by pulling on the release handle and ensuring the IO Module (IOM) does not move when pulled. Reinstall the IO Module (IOM) if it is not securely installed into the Chassis.
Step 4: Connect the data cables to the IO Module (IOM).

3.6 Power Supply Unit (PSU) Replacement

<table>
<thead>
<tr>
<th>Replacement Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel Required</td>
</tr>
<tr>
<td>Service Window</td>
</tr>
</tbody>
</table>

- ESD Sensitive
- Electric Shock
- Fan Blade Danger

Step 1: Unpack and inspect the new Power Supply Unit (PSU) for damage.

a. Inspect the packaging that the Power Supply Unit (PSU) replacement was shipped in and record any damage to the box. Large cuts, open boxes, and crushed corners should be reported.

b. Remove the Power Supply Unit (PSU) from the packaging and verify that there is no damage to the Power Supply Unit (PSU). Dents, scratches, and broken parts should be reported. If major damage has occurred to the Power Supply Unit (PSU), DO NOT use the replacement part.

c. Store in a safe location until the Power Supply Unit (PSU) is needed for installation.

Step 2: Move to the rear of the rack and disconnect the power cable from the Power Supply Unit (PSU).

Figure 68: Disconnect Power Cable

- From the rear of the rack, grasp the ring handle with your index finger and use your thumb to press the latch release using a pinching motion.
3.6 Power Supply Unit (PSU) Replacement

b. Carefully pull the Power Supply Unit (PSU) out of the Power Supply Unit (PSU) slot.

Figure 69: Power Supply Unit (PSU) Release Latch Operation

Figure 70: Uninstall Power Supply Unit (PSU)

Step 4: Install the Power Supply Unit (PSU) into the enclosure.

a. Orient the Power Supply Unit (PSU) with the power port located on the top and insert it into the Power Supply Unit (PSU) slot. The location of the power port is shown in the following image.
3.6 Power Supply Unit (PSU) Replacement

b. Verify that the Power Supply Unit (PSU) is fully seated and latched into the Power Supply Unit (PSU) slot by gently pulling on the handle.

Step 5: Connect the power cable to the Power Supply Unit (PSU).
3.7 Rails Replacement

Figure 73: Connect Power Cable

3.7 Rails Replacement

Replacement Requirements

<table>
<thead>
<tr>
<th>Tool</th>
<th># Needed</th>
<th>Required vs. Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel Required</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Service Window</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>T15 Torx Screwdriver</td>
<td>1</td>
<td>Required</td>
</tr>
<tr>
<td>Level</td>
<td>1</td>
<td>Optional</td>
</tr>
<tr>
<td>Lift Equipment</td>
<td>1</td>
<td>Optional</td>
</tr>
<tr>
<td>ESD Mitigation Equipment</td>
<td>1</td>
<td>Required</td>
</tr>
</tbody>
</table>

- ESD Sensitive
- Electric Shock
- Fan Blade Danger
- Safe Lift: Under 50 lbs.
- Safe Lift: Over 50 lbs.

Step 1: Unpack and inspect the new Rails for damage.

 a. Inspect the packaging that the Rails replacement was shipped in and record any damage to the box. Large cuts, open boxes, and crushed corners should be reported.

 b. Remove the Rails from the packaging and verify that there is no damage to the Rails. Dents, scratches, and broken parts should be reported. If major damage has occurred to the Rails, DO NOT use the replacement part.

 c. Store in a safe location until the Rails is needed for installation.

Step 2: Disconnect the power and data cables from the enclosure.

 a. Unclip the retention strap as shown in the following image.
3.7 Rails Replacement

Figure 74: Unclipping Cable Retention Strap (Generic PSU Shown)

b. Move to the rear of the rack and disconnect the power cables from each of the two Power Supply Unit (PSU).

Figure 75: Disconnect Power Cables

c. Disconnect the Ethernet Cable from the RJ45 Ethernet Management port.
d. Disconnect the QSFP28 cables from all of the IOM ports.

Step 3: Uninstall the Chassis from the rack mounted rails.
 a. From the front of the rack, using the T15 Torx screwdriver, loosen the two Torx captive screws that secure the Chassis to the rail. Repeat this step to loosen the two Torx captive screws that secure the Chassis to the remaining rail. The location of the captive screws are shown in the following image.
b. Carefully pull the Chassis out of the rack. The chassis will slide out of the rails until the locking tabs on the side of the chassis engage and stop the chassis from being pulled out further.

c. Depress the locking tabs on the sides of the chassis to allow it to be removed from the rails.
d. Continue sliding the chassis out of the rack and ensure extra care is taken to support the weight of the Chassis when the Chassis is clear of the rack mount rails.

Figure 80: Uninstall Chassis
Step 4: Uninstall the rack mount Rails.

a. From the front of the rack, using the T15 Torx screwdriver, uninstall the M5 Torx screw that secure the front of the rack mount Rails and bracket to the rack.

Figure 81: Uninstall Front Rack Mount

b. From the rear of the rack, using the T15 Torx screwdriver, uninstall the two M5 Torx screws that secure the rear of the rack mount Rails to the rack. Remove the Rail from the rack by rotating the front mount out and pulling the rear mount out of the rack.
3. Support
3.7 Rails Replacement

Figure 82: Uninstall Rear Rack Mount

Figure 83: Remove Rail
3. Support
3.7 Rails Replacement

Step 5: Uninstall the remaining Rails in the same way the first was uninstalled.
Step 6: Install the rack mount Rails.

a. Determine which of the rails is the right and which is the left as shown in the following image.

Figure 84: Rails Identification

b. From the rear of the rack, set the rear of the Rails in the same location as the damaged Rails and extend it so that the pins fit into the same U holes.

Figure 85: Rails Location

c. Secure the rear of the rack mount Rails to the rack using the T15 Torx screwdriver, install the two M5 Torx screws that secure the rear of the rack mount Rails to the rack.
d. From the front of the rack, using the T15 Torx screwdriver, install the M5 Torx screws that secure the front of the rack mount Rails and bracket to the rack.
Step 7: Install the remaining Rails in the same way the first was installed.

Step 8: Install the Chassis onto the rack mounted rails.
 a. Carefully slide the Chassis onto the rails until the rack ears are flush with the mounts on the rails.
b. Using the T15 Torx screwdriver, tighten the two Torx captive screws to secure the Chassis to the rail. Repeat this step to secure the remaining rack mount to the remaining rail.
Step 9: Connect the power and data cables to the enclosure.

a. Loop the PSU's retention clip around the power cable and pinch it until the clip catches and locks in place.

b. Slide the retention clip forward until it stops near the cable connector. Doing this will ensure that the retention clip functions properly in the event the cable is accidentally pulled.
3. Support
3.7 Rails Replacement

c. Connect the Ethernet Cable into the Ethernet Management port.

Figure 92: Connecting RJ45 Ethernet Cable to Management Port

d. Connect the QSFP28 cables into all of the IOM ports.

Figure 93: Connect QSFP28 Cables

e. Move to the rear of the rack and connect the power cables into each of the two Power Supply Unit (PSU) power connectors.
3. Support

3.7 Rails Replacement

Figure 94: Connect Power Cables

f. Wrap the power cable in the cable retention clip and cinch it so it securely holds the power cable in place.

Figure 95: Cinching Retention Strap (Generic PSU Shown)
Management

In This Chapter:
- Open Composable API................................. 71
- In-band Enclosure Management.................... 71
- NVMe-CLI.. 71
- Downloading Firmware from the Support Portal.. 76
- Enclosure Firmware Update............................. 78
- Drive Firmware Upgrade................................. 80
4.1 Open Composable API

The Open Composable API is a RESTful interface for OpenFlex that enables a Unified Fabric Control Plane for Storage Fabric Devices. This allows for composing disaggregated storage resources—with compute, networking, and memory—into virtual systems in the future. These virtual systems will be dynamically provided to the right application at the right time, ensuring SLAs can be met automatically.

- Monitor hardware sensors (temperatures, voltages, fan speeds, hardware state)
- Configure hardware (update firmware, reboot individual components or systems, assert LEDs)
- Capture inventory data (serial number, part number, etc.)
- Capture log information
- Configure policies (user access lists, authentication, HTTPS/TLS encryption/security with certificate/key settings)
- Self-discovery of other locally-available resources configurable using the Open Composable API for OpenFlex

4.1.1 Accessing the API

The API is accessible on every fabric device connected to the fabric network. The simplest way to access the API is to find the IP address of the management port on the rear of the Chassis Device that contains all of the other devices. This is set to DHCP by default. Navigating to that IP address from a browser with /Query/ added to the end of the IP address will return top level status information.

The IP addresses/API targets listed in this response body will help in navigating the resources available on this device, as well as provide links and contextual information related to other devices connected on the fabric.

4.1.2 RESTful API

This API is based on the true REST architectural style meaning that all actions/verbs will be handled exclusively by the existing HTTP Methods (GET, POST, PUT, DELETE, HEAD, OPTIONS) along with all URI patterns containing only fully qualified collections of resources and resource instantiations (nouns only, no action verbs permitted in the URI).

4.2 In-band Enclosure Management

The OpenFlex Data24 provides In-Band Enclosure Management functionality through the OCAPI. To leverage the In-Band Management features, users must install a standalone version of the OCAPI onto an initiator or host and connect a management device that is presented up to the fabric via the IOM enclosure manager(EM) and discoverable using nvme discover. For details on how to install the OCAPI on a host to perform in-band enclosure management, see Installing Standalone OCAPI for In-Band Management (page 86)

4.3 NVMe-CLI

NVMe-CLI is an open-source management tool for NVMe storage devices in Linux®. The tool allows users to manage device firmware, erase data securely, output error logs, and other similar management functions. It is a command-line utility and can be used to script management functions for large storage arrays.
4.3 NVMe-CLI

Note: OpenFlex Data24 supports only version 1.12 of NVMe-CLI

To install NVMe-CLI on Ubuntu 18.04.4 LTS:

```
sudo apt-get install -y nvme-cli
```

To Install NVMe-CLI on CentOS 7.7, 8.1/RHEL 7.7, 8.2:

```
sudo yum install nvme-cli
```

For further details on NVMe-CLI see the following resources:

- NVMe-CLI Debian Manpages
- General NVMe-CLI Information from nvmexpress.org

4.3.1 Discovering and Connecting to NVMe™ Devices on OpenFlex Data24

This process assumes the user knows the IP address of the IOM of the enclosure. The IOM MAC address is available on the pull-out tab at the front of the enclosure and can be used to determine the IP address. Examples where REST commands are required will display cURL commands.

Step 1: Optional. Utilize this step in cases where the network may not detect the IP addresses of the adapters that will be connected.

a. To determine the Storage Device ID, issue a GET to `/Query/` to review a list of devices installed in the target enclosure.

```
curl -u username:password http://ip.of.target.iom:80/Query/
```

b. Review the data returned to find the device ID of the target device. See the highlighted example below.

```json
{
    "InformationStructure": {
        "AuthenticationType": {
            "ID": 0,
            "Name": "Basic"
        },
        "HTTPPort": 80,
        "HTTPSPort": 443,
        "LogLevel": "debug",
        "MaximumThreads": 5,
        "Name": "OpenFlex API",
        "OwningOrganization": "WDC",
        "Status": "Released",
        "StructureDescription": "REST-based API for Device Management. Use HTTP OPTIONS with header '{"Documentation": "Schema"} to get resource schema information based on URI. Use HTTP OPTIONS with header '{"Documentation": "Info"} to get general information based on URI. "
    }
}
```
c. Determine the Adapters in the system using the Storage Device. Send a GET to the device ID gathered in the previous step.

```
```

d. Review the output to locate the IP of the appropriate port.

```
{
   "Self": "http://10.20.30.40:80/Storage/Devices/openflex-data24-usalp00000aa000a/Adapters/1/",
   "Members": [  
      {
         "Self": "http://10.20.30.40:80/Storage/Devices/openflex-data24-usalp00000aa000a/Adapters/1/",
         "ID": "1",
         "Name": "IOM-A-AIC-A",
         "Status": {
            "State": {
               "ID": 16,
               "Name": "In service"
            },
            "Health": [  
               {  
                  "ID": 5,
                  "Name": "OK"
               }  
            ]
         },
         "HostName": "openflex-data24-usalp00000aa000a-iom-a-aic-a",
         "Ports": "http://10.20.30.40:80/Storage/Devices/openflex-data24-usalp00000aa000a/Ports/?adapterid=1"
      }  
   ],
   "URI": "/Query/",
   "TimeoutMultiplier": 1,
   "Version": "1.2.0-301"
}
```
4. Management

4.3 NVMe-CLI

e. Determine the IP address of the adapter that is attached to your host using the ports link. This will be the IP that is used to perform an `nvme discover` to find drives connected on the fabric. Send a GET to the Ports object associated with the adapter.

```
curl -u username:password http://10.20.30.40:80/Storage/Devices/openflex-data24-usalp00000aa000a/Ports/?adapterid=1
```

f. Review the returned data to find the IP of the proper port.

```json
{
  "Members": [
    {
      "Self": "http://10.20.30.40:80/Storage/Devices/openflex-data24-usalp00000aa000a/Ports/70_b3_d5_76_8a_be_192_168_10_51_24/",
      "ID": "70_b3_d5_76_8a_be_192_168_10_51_24",
      "Status": {
        "State": {
          "ID": 16,
          "Name": "In service"
        },
        "Health": [
          {
            "ID": 5,
            "Name": "OK"
          }
        ]
      },
      "AddressOrigin": {
        "ID": 65536,
        "Name": "DHCPv4"
      },
      "IPv4Address": "192.168.10.51",
      "IPv4Gateway": "192.168.10.1",
      "MACAddress": "70:b3:d5:76:8a:be",
      "NetworkType": {
        "ID": 8,
        "Name": "IPv4 Network"
      },
      "MTUBytes": 5000,
      "Adapters": "http://10.20.30.40:80/Storage/Devices/openflex-data24-usalp00000aa000a/Adapters/?portid=70_b3_d5_76_8a_be_192_168_10_51_24"
    }
  ]
}
```

Step 2: Open a terminal and use the adapter's IPv4 address to discover all nvme devices installed on the fabric.

```
sudo nvme discover -t rdma -a 192.168.10.51
```
Step 3: Review the output to locate the subnqn number associated with the device that will be connected. The following example shows two devices, the In-Band management device, as well as the device intended for connection.

Discovery Log Number of Records 2, Generation counter 0
====Discovery Log Entry 0=====
trtype: rdma
adrfam: ipv4
subtype: nvme subsystem
treq: not specified
portid: 0
tsrvcid: 4420
traddr: 192.168.10.51
rdma_prtype: roce-v2
rdma_qptype: connected
rdma_cms: rdma-cm
rdma_pkey: 0x0000
====Discovery Log Entry 1=====
trtype: rdma
adrfam: ipv4
subtype: nvme subsystem
treq: not specified
portid: 0
tsrvcid: 4420
subnqn: nqn.1992-05.com.wdc.openflex-data24-usalp00000aa000a:nvme.1 (subnqn for NVMe device)
traddr: 192.168.10.51
rdma_prtype: roce-v2
rdma_qptype: connected
rdma_cms: rdma-cm
rdma_pkey: 0x0000

Step 4: Connect to the device using the subnqn.

 sudo nvme connect -t rdma -a 192.168.10.51 -n nqn.1992-05.com.wdc.openflex-data24-usalp00000aa000a:nvme.1

Step 5: Verify the connection using `nvme list -v`.

```bash
root:~$ sudo nvme list -v
NVM Express Subsystems

Subsystem     Subsystem-NQN    Controllers
------------- -------------------- ----------------------------------------
------------- ----------------------------------------
------------- ----------------------------------------
nvme-subsys0  nqn.1992-05.com.wdc.openflex-data24-usalp00000aa000a:nvme.1

NVM Express Controllers

<table>
<thead>
<tr>
<th>Device</th>
<th>SN</th>
<th>Mn</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
4. Management

4.4 Downloading Firmware from the Support Portal

Note: The product must be registered in order to download firmware updates.

Step 1: Open a web browser and go to: https://portal.wdc.com/Support/s/.
The Western Digital Enterprise Support Center will appear.

Step 2: Log in to the Western Digital Enterprise Support Center using a valid email address and password:

Sign in to SUPPORT PORTAL

Email
Password

LOGIN

Several support options will appear on the page.

Step 3: Click the Downloads option:

Downloads

The Western Digital downloads page will appear.

Step 4: From the Identify Product section, select the Product, OS / Type, and Release Version:
4.4 Downloading Firmware from the Support Portal

The **Select Files for Download** section updates with the applicable options:

Step 5: From the **Select Files for Download** section, expand the **Firmware** option and select the checkbox for the appropriate firmware file(s):

Available Downloads:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Size</th>
<th>Released</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware</td>
<td>1.96MB</td>
<td>11 Oct 2018</td>
</tr>
<tr>
<td>Firmware</td>
<td>843.7KB</td>
<td>22 Oct 2018</td>
</tr>
</tbody>
</table>

Note: Filenames will vary, depending on the options chosen in the **Identify Product** section.

Step 6: In the **Review & Download Files** section, review the selected files to ensure that all intended files are included in the list.
3. Review & Download Files

Custom Download List:

<table>
<thead>
<tr>
<th>Firmware_File</th>
<th>1.96MB</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware_File</td>
<td>843.7KB</td>
<td>X</td>
</tr>
</tbody>
</table>

Files: 2 Total Size: 2.70MB

Zip Tar

Step 7: If needed, remove an unwanted file by clicking its red X.

Step 8: Select the appropriate archive file format by clicking either Zip or Tar.

Step 9: Click the Download Files button to download the selected files.

Step 10: If needed, unzip/extract the file to the desired location.

4.5 Enclosure Firmware Update

This section provides instructions for updating enclosure firmware on the OpenFlex Data24 using the OCAPI.

Before you begin:

- The following cURL commands must be run from a Linux host.
- The variable portions of the commands are enclosed in angle-brackets (i.e. <filename>) and should be replaced by information specific to the user’s system.
- The top level /Storage/Devices/{id}/ resource in this example is one of the two IOMs.

Step 1: Follow the instructions in Downloading Firmware from the Support Portal (page 76) to download the firmware file to an appropriate location on the host.

Step 2: From a command line, issue a POST request to the /Storage/Devices/{id}/OperatingSystem/ resource to upload the firmware file:

```
curl -v -i -X POST -u <username>:<password> -F FirmwareFile=@<filepath>/<filename> http://10.20.30.40/Storage/Devices/0123456789/OperatingSystem/
```

A successful upload will result in a 201 response.

Step 3: Issue a GET request to the top level /Storage/Devices/{id}/ resource and note the Etag returned in the header:

```
```

HTTP/1.1 200 OK
Content-Type: application/json
Etag: 783e532540dc6b3e4978604a2f3e0353
Date: Thu, 24 Sep 2020 21:28:38 GMT
4. Management

4.5 Enclosure Firmware Update

Step 4: Using the Etag from the GET request, issue a PUT request to the same resource, passing the key/value pair of "FirmwareUpdate":true to update the firmware:

```
```

A successful PUT request will result in a 202 response:

```
HTTP/1.1 202 Accepted
Content-Type: application/json
Location: http://10.20.30.40/Storage/Devices/0123456789/Jobs/FirmwareUpdate/
Date: Thu, 24 Sep 2020 21:53:41 GMT
Content-Length: 166
```

Step 5: To verify a successful update, issue a GET request to the listed FirmwareUpdate jobs resource:

```
```

If the update was successful, the GET response body will show a completed status:

```
{
    "ID": "FirmwareUpdate",
    "PercentComplete": 100,
    ...
}
```

Step 6: Using the Etag again, issue another PUT request, passing the key/value pair of "FirmwareActivate":true to activate the firmware:

```
```

A successful PUT request will result in a 202 response:

```
HTTP/1.1 202 Accepted
Content-Type: application/json
Location: http://10.20.30.40/Storage/Devices/0123456789/Jobs/FirmwareActivate/
Date: Thu, 24 Sep 2020 22:04:07 GMT
Content-Length: 166
```

Step 7: To verify a successful activation, issue a GET request to the listed FirmwareActivate jobs resource:

```
```

If the activation was successful, the GET response body will show a completed status:

```
{
    ...
}
```
4. Management

4.6 Drive Firmware Upgrade

This section provides instructions for updating drives firmware on the OpenFlex Data24 using NVMe-CLI.

Before you begin:

Prerequisites

- NVMe-CLI
- Supported OS
- Device identifier(s) for drives that will be updated.
- This procedure assumes that the targeted NVMe device is has already been connected. For an example of how to connect a device see Discovering and Connecting to NVMe™ Devices on OpenFlex Data24 (page 72)

Step 1: Follow the instructions in Downloading Firmware from the Support Portal (page 76) to download the firmware file to an appropriate location on the host.

```
nvme fw-download /dev/nvme3 -f /path-to-fw-file/malibux_GD_R2109003.vpkg
```

Step 2: Use `fw-download` to load the new drive firmware onto the target NVMe device.

```
nvme fw-download /dev/nvme3 -f /path-to-fw-file/malibux_GD_R2109003.vpkg
```

Step 3: Use `fw-activate` to activate firmware and commit to install the loaded firmware version.

```
nvme fw-activate /dev/nvme3 -s 3 -a 1
```

Step 4: Use `reset` to reset the drive so that the firmware activation can finalize.

```
nvme reset /dev/nvme3
```

Step 5: To optionally confirm the firmware version that is now loaded on the drive use `id-ctrl` and review the output.

```
nvme id-ctrl /dev/nvme3
```

Step 8: Repeat these steps to update firmware for the second IO Module (IOM).

Note: For high availability, it is recommended to update one IO Module (IOM) at a time. Verify host access before updating the second IO Module (IOM).
Configuration

In This Chapter:
- Device Installation Order..........................82
- Initial Network Configuration 83
- Setting Static IPs on Ports83
- Port Setup Using Bash Script86
5.1 Device Installation Order

The OpenFlex Data24 holds 1-24 storage drive assemblies. The minimum number of drives required is 1, and drives can be installed in increments of 1 at a time. However, there is a specific installation order that is recommended in order to optimally balance data load distribution.

Each AIC controls 8 drives. The first AIC controls drives 1 - 8, the second controls drives 9 - 16, and the third controls drives 17-24. To balance the IO load optimally, install in the pattern shown in the following image.

Figure 102: Drive Installation Order
5.2 Initial Network Configuration

This section outlines the behavior of the OpenFlex Data24 when it is initially connected to a network. The default configuration for the RJ45 management ports and the QSFP28 data ports will be to initially attempt a network configuration using DHCP. If the network has been configured with a DHCP server to perform network discovery, the platform will be configured with the settings generated by the DHCP server.

If there is no DHCP server available on the network to configure the platform, the enclosure manager (EM) will fall back to an mDNS configuration and assign addresses to IOMs A and B, as well as to all 6 AICs, for a total of 8 link local addresses. The EM will also configure a name and ID for the platform itself. This base mDNS configuration will allow local access through the RJ45 management port to a direct-connect host or laptop. Connecting in this way will allow users to apply their own desired network settings.

Enclosure ID and Link Local Address Patterns and Examples

The following table defines the design patterns that can be used to understand the addresses that are configured by mDNS.

Table 19: Address Design Patterns

<table>
<thead>
<tr>
<th>Property</th>
<th>REST API URL</th>
<th>REST API Property</th>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>encId</td>
<td>/Storage/Devices/<encId></td>
<td>ID</td>
<td><brand name>-<Serial Number></td>
<td>openflex-data24-usalp04619xx0000</td>
</tr>
<tr>
<td>encName</td>
<td>/Storage/Devices/<encId></td>
<td>Name</td>
<td><encId></td>
<td>openflex-data24-usalp04619xx0000</td>
</tr>
<tr>
<td>IOM Hostname</td>
<td>/Storage/Devices/<encId>/Controllers/<controller-id></td>
<td>Name</td>
<td><encName>-iom< a</td>
<td>b></td>
</tr>
<tr>
<td>AIC Hostname</td>
<td>/Storage/Devices/<encId>/Adapters/<adapter-id></td>
<td>Name</td>
<td><encName>-ioma-aic< a</td>
<td>b</td>
</tr>
</tbody>
</table>

Further resources

The following is a list of resources available to further assist in network configuration beyond this initial configuration.

- Setting Static IPs on Ports (page 83)
- Port Setup Using Bash Script (page 86)

5.3 Setting Static IPs on Ports

Before you begin: This procedure assumes the IOM IP addresses are known.

By default, the OpenFlex Data24 is set to use DHCP to assign IPv4 addresses to all of the adapter ports. This procedure shows how to use the OCAPI to set all of the adapter ports to static IP addresses. All examples will use cURL.
5.3 Setting Static IPs on Ports

Step 1: Drill down into the OCAPI to access each Port object.

Step 2: Do a GET to the IOMs /query/ object to get the adapter addresses.

```shell
curl -i -u user:password http://10.20.30.40/query/
```

Step 3: Use the device URL obtained in the previous step to find the URLs for all of the Adapters in the IOM.

```shell
```

Step 4: The output will show all of the installed adapters, as well as their associated Ports at the bottom of each Adapter object that will lead to the associated Port object for that adapter for later reference.

```json
{
   "ID": "1",
   "Name": "IOM-A-AIC-A",
   "Status": {
      "State": {
         "ID": 16,
         "Name": "In Service"
      },
      "Health": [
         {
            "ID": 5,
            "Name": "OK"
         }
      ]
   },
}
```

Step 5: To find the Port object’s specific device ID, query the Ports object associated with the device.

```shell
```

Step 6: Find the desired Port ID in the output.

```json
{
   "ID": "00_0c_ca_11_00_40_10_202_249_56_24",
   "Status": {
      "State": {
         "ID": 16,
         "Name": "In service"
      },
      "Health": [
         {
            "ID": 5,
            "Name": "OK"
         }
      ]
   }
}```
5.3 Setting Static IPs on Ports

Step 7: Send a HEAD to the Port object you wish to configure to secure the Etag for authorization purposes.

```
curl -i -u user:password -X HEAD http://10.20.30.40/Storage/Devices/openflex-data24-usalp03420xxxxxx/Ports/00_0c_ca_11_00_40_10_202_249_56_24/
```

Step 8: Send a PUT to the Port object that contains the desired IPv4 address as well as the instruction to change the AddressOrigin parameter of that Port to STATIC instead of DHCP and the Etag collected from the previous step.

```
curl -i -u user:password -H "Content-Type: application/json" -H "If-Match: 3677651d2011428f32120a029b015e80" -X PUT --data '{"AddressOrigin": {"ID": 3}, "IPv4Address": "10.50.50.50/24"}' http://10.20.30.40/Storage/Devices/0123456789/Ports/00_0c_ca_11_00_40_10_202_249_56_24/
```

Step 9: Check the status of the Port by performing another GET to check the output.

```
{
 "Self": "http://10.20.249.56:80/Storage/Devices/openflex-data24-usalp03420xxxxxx/Ports/00_0c_ca_11_00_40_10_202_249_56_24/",
 "ID": "00_0c_ca_11_00_40_10_202_249_56_24",
 "Status": {
 "State": {
 "ID": 16,
 "Name": "In service"
 },
 "Health": [
 {
 "ID": 5,
 "Name": "OK"
 }
]
 },
 "AddressOrigin": {
 "ID": 3,
 "Name": "STATIC"
 },
 "IPv4Address": "10.50.50.50/24",
 "IPv4Gateway": "10.50.50.1",
 "MACAddress": "00:0c:ca:11:00:40",
}
```
5.4 Port Setup Using Bash Script

Users can leverage a Bash script available with the OpenFlex Data24 firmware package available at https://portal.wdc.com/Support/s/. The script will walk a user through the steps to configure a single port, and will have to be restarted for each Port.

The script will be named init_iom_openflex-data24.sh.

5.5 Installing Standalone OCAPI for In-Band Management

Before you begin:

- a supported version of NVMe-CLI must be installed.
- The target OpenFlex Data24 must be either directly connected or visible on the network.

The OCAPI standalone distribution runs on an initiator or host, to which an NVMe device like OpenFlex Data24 is connected. The standalone OCAPI uses IOCTLs to send in-band commands to the in-band management interface on the NVME devices in the OpenFlex Data24, and returns the data to the caller. This procedure provides instructions on how to install the OCAPI on a Linux initiator or host.

Step 1: Download the latest firmware bundle available at http://westerndigital.com/support. The bundle will contain a compressed archive called openflex-api_matterhorn-master.0000.tgz from the OpenFlex Data24.

Step 2: Untar the openflex-api_matterhorn-master.0000.tgz file to the desired directory on the Linux host, and into that directory.

Step 3: If systemctl will be used to manage the OCAPI service, use the following command to extract the binary:

```bash
sudo tar -xf openflex-api_matterhorn-master.0000.tgz -C
```

Step 4: If systemctl will not be used, remove the -C command modifier.

```bash
sudo tar -xf openflex-api_matterhorn-master.0000.tgz
```

Step 5: Run the binary using the desired system service and parameters.

```bash
sudo nvme discover -t rdma -a <Data24_IPAddress>
sudo nvme connect -t rdma -a <Data24_IPAddress> -i 1 -n nqn.1992-05.com.wdc.<Data24_Name>:nvme.2
```

Step 7: Use id-ctrl to verify the connection.
5.5 Installing Standalone OCAPI for In-Band Management

```
sudo nvme id-ctrl /dev/nvm#
```
Safety

In This Chapter:
- Electrostatic Discharge........................................... 89
- Optimizing Location.................................................. 89
- Power Connections..................................................... 89
- Power Cords............................................................. 89
- Rackmountable Systems............................................. 90
- Restricted Access Location....................................... 90
- Safety and Service.................................................... 90
- Safety Warnings and Cautions................................. 91
6.1 Electrostatic Discharge

**CAUTION:** Electrostatic discharge can harm delicate components inside Western Digital products.

Electrostatic discharge (ESD) is a discharge of stored static electricity that can damage equipment and impair electrical circuitry. It occurs when electronic components are improperly handled and can result in complete or intermittent failures.

Wear an ESD wrist strap for installation, service and maintenance to prevent damage to components in the product. Ensure the antistatic wrist strap is attached to a chassis ground (any unpainted metal surface). If possible, keep one hand on the frame when you install or remove an ESD-sensitive part.

Before moving ESD-sensitive parts, place them in ESD static-protective bags until you are ready to install the part.

6.2 Optimizing Location

Failure to recognize the importance of optimally locating your product, and failure to protect against electrostatic discharge (ESD) when handling your product, can result in lowered system performance or system failure.

Do not position the unit in an environment that has extreme high temperatures or extreme low temperatures. Be aware of the proximity of the unit to heaters, radiators, and air conditioners.

Position the unit so that there is adequate space around it for proper cooling and ventilation. Consult the product documentation for spacing information.

Keep the unit away from direct strong magnetic fields, excessive dust, and electronic/electrical equipment that generate electrical noise.

6.3 Power Connections

Be aware of the ampere limit on any power supply or extension cables being used. The total ampere rating being pulled on a circuit by all devices combined should not exceed 80% of the maximum limit for the circuit.

**CAUTION:** The power outlet must be easily accessible close to the unit.

**CAUTION:** Always use properly grounded, unmodified electrical outlets and cables. Ensure all outlets and cables are rated to supply the proper voltage and current.

This unit has more than one power supply connection; both power cords must be removed from the power supplies to completely remove power from the unit. There is no switch or other disconnect device.

6.4 Power Cords
6.5 Rackmountable Systems

**CAUTION:** Always install rack rails and storage enclosure according to OpenFlex Data24 product documentation. Follow all cautions, warnings, labels, and instructions provided within the rackmount instructions.

Reliable grounding of rack-mounted equipment should be maintained.

If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. Therefore, consideration should be given to installing the equipment in an environment compatible with the maximum ambient temperature (Tma) specified by the manufacturer.

Observe the maximum rated ambient temperature, which is specified in the product documentation.

For safe operation of the equipment, installation of the equipment in a rack should be such that the amount of air flow is not impeded so that the safe operation of the equipment is not compromised.

6.6 Restricted Access Location

The OpenFlex Data24 are intended for installation in a server room or computer room where at least one of the following conditions apply:

- access can only be gained by skilled or service persons or by instructed persons who have been instructed about the restrictions applied to the location and about any precautions that shall be taken and/or
- access is through the use of a tool or lock and key, or other means of security, and is controlled by the authority responsible for the location.

6.7 Safety and Service
All maintenance and service actions appropriate to the end-users are described in the product documentation. All other servicing should be referred to an Western Digital-authorized service technician.

To avoid shock hazard, turn off power to the unit by unplugging both power cords before servicing the unit. Use extreme caution around the chassis because potentially harmful voltages are present.

When replacing a hot-plug power supply, unplug the power cord to the power supply being replaced before removing it from the OpenFlex Data24.

The power supply in this product contains no user-serviceable parts. Do not open the power supply. Hazardous voltage, current and energy levels are present inside the power supply. Return to manufacturer for servicing.

Use caution when accessing part of the product that are labeled as potential shock hazards, hazardous access to moving parts such as fan blades.

### 6.8 Safety Warnings and Cautions

To avoid personal injury or property damage, before you begin installing the product, read, observe, and adhere to all of the following safety instructions and information. The following safety symbols may be used throughout the documentation and may be marked on the product and/or the product packaging.

- **CAUTION**: Indicates the presence of a hazard that may cause minor personal injury or property damage if the CAUTION is ignored.

- **WARNING**: Indicates the presence of a hazard that may result in serious personal injury if the WARNING is ignored.

  Indicates potential hazard if indicated information is ignored.

  Indicates shock hazards that result in serious injury or death if safety instructions are not followed.

  Indicates do not touch fan blades, may result in injury.

  Indicates disconnect all power sources before servicing.
Regulatory

In This Chapter:
- Europe (CE Declaration of Conformity)......93
- FCC Class A Notice.............................................93
- ICES-003 Class A Notice—Avis NMB-003, Classe A.................................................................93
- Japanese Compliance Statement, Class A ITE..................................................................................93
- Taiwan Warning Label Statement, Class A ITE..............................................................................94
7.1 Europe (CE Declaration of Conformity)

Marking by the symbol indicates compliance of this system to the applicable Council Directives of the European Union, including the Electromagnetic Compatibility Directive (2014/30/EU), the Low Voltage Directive (2014/30/EU), RoHS Directive (2011/65/EU) and EcoDesign Directive (2019/424/EU). A “Declaration of Conformity” in accordance with the applicable directives has been made and is on file at Western Digital Technologies, Inc. Europe.

UK Import Representation Contact

Western Digital UK Limited
Hamilton House, Regent Park, Kingston Road Leatherhead, Surrey KT22 7PL, GB, United Kingdom
Telephone: +44 1372 366000

7.2 FCC Class A Notice

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference.
2. This device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy, and if it is not installed and used in accordance with the instruction manual, it may cause harmful interference to radio communications. Any modifications made to this device that are not approved by Western Digital may void the authority granted to the user by the FCC to operate equipment.

7.3 ICES-003 Class A Notice—Avis NMB-003, Classe A

This Class A digital apparatus complies with Canadian ICES-003. Cet appareil numerique de la classe A est conforme à la norme NMB-003 du Canada.

7.4 Japanese Compliance Statement, Class A ITE

The following Japanese compliance statement pertains to VCCI EMI regulations:

この装置は、クラスA情報技術装置です。この装置を住宅環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。

VCCI — A

English translation:
This is a Class A product based on the Technical Requirement of the Voluntary Control Council for Interference by Information Technology (VCCI). In a domestic environment, this product may cause radio interference, in which case the user may be required to take corrective actions.

7.5 **Taiwan Warning Label Statement, Class A ITE**

警告使用者：
此為甲類資訊技術設備，於居住環境中使用時，
可能會造成射頻擾動。在此種情況下，使用者應
被要求採取某些適當的對策。

English translation:
This is a Class A product. In a domestic environment, this product may cause radio interference, in which case, the user may be required to take adequate measures.