
P A R A L L E L P R O G R A M M I N G
A N D O P T I M I Z A T I O N W I T H

HANDBOOK ON THE

DEVELOPMENT AND

OPTIMIZATION OF

PARALLEL

APPLICATIONS FOR

INTEL XEON

PROCESSORS

AND INTEL

XEON PHI

COPROCESSORS

INTEL XEON PHI
COPROCESSORS

TMR

SE
CO

ND
 E

DI
TI

ON

C O L F A X I N T E R N A T I O N A L
A N D R E Y V L A D I M I R O V | R Y O A S A I | V A D I M K A R P U S E N K O

PARALLEL PROGRAMMING AND OPTIMIZATION

WITH INTEL R© XEON PHI
TM COPROCESSORS

HANDBOOK ON THE DEVELOPMENT AND OPTIMIZATION

OF PARALLEL APPLICATIONS

FOR INTEL R© XEON R© PROCESSORS

AND INTEL R© XEON PHI
TM COPROCESSORS

Second Edition

Andrey Vladimirov, Ryo Asai and Vadim Karpusenko

c© Colfax International, 2013–2015

Electronic book built: May 14, 2015
Last revision date: May 13, 2015

Copyrighted Material
Copyright c© 2013–2015, Colfax International. All rights reserved.
Cover image Copyright c© pio3, 2013. Used under license from Shutterstock.com.
Published by Colfax International, 750 Palomar Ave, Sunnyvale, CA 94085, USA.
All Rights Reserved.
No part of this book (or publication) may be reproduced or transmitted in any form or by any means, electronic or mechan-

ical, including photocopying, recording or by any information storage and retrieval system, without written permission from the
publisher, except for the inclusion of brief quotations in a review.

Intel, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
All trademarks and registered trademarks appearing in this publication are the property of their respective owners.

Terms of Use
This book is available in the electronic version and in the printed version. Both versions are accompanied by a set of practical

exercises available as an electronic archive. The book and the practical exercises may be used under the following terms:

1. You may use book and the code of the practical exercises for your own education.
2. If you use this book and/or practical exercises to teach a course,

a) every student must purchase their own copy of the book, OR
b) you must obtain written authorization from the copyright holder.

3. If you wish to use significant portions of the code of the practical exercises for derivative works, you must obtain written
authorization from us.

4. You MAY NOT distribute the electronic version of the book or the source code of the “labs”.
5. If you own a printed version of the book, you may lend it to other people, and the borrowers of the book may download

the labs as described in Section 6.2 use them under the terms described here. This applies to individual book owners and
to libraries (i.e., institutional book owners).

Disclaimer and Legal Notices
While best efforts have been used in preparing this book, the publisher makes no representations or warranties of any kind

and assumes no liabilities of any kind with respect to the accuracy or completeness of the contents and specifically disclaims
any implied warranties of merchantability or fitness of use for a particular purpose. The publisher shall not be held liable or
responsible to any person or entity with respect to any loss or incidental or consequential damages caused, or alleged to have been
caused, directly or indirectly, by the information or programs contained herein. No warranty may be created or extended by sales
representatives or written sales materials.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests are measured using specific computer systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products.

Results have been simulated and are provided for informational purposes only. Results were derived using simulations run
on an architecture simulator or model. Any difference in system hardware or software design or configuration may affect actual
performance.

Because of the evolutionary nature of technology, knowledge and best practices described at the time of this writing, may
become outdated or simply inapplicable at a later date. Summaries, strategies, tips and tricks are only recommendations by the
publisher, and reading this eBook does not guarantee that one’s results will exactly mirror our own results. Every company
is different and the advice and strategies contained herein may not be suitable for your situation. References are provided for
informational purposes only and do not constitute endorsement of any websites or other sources.

The products described in this document may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. All products, computer systems, dates, and figures specified are preliminary based on
current expectations, and are subject to change without notice.

ISBN: 978-0-9885234-2-5

About the Authors

Andrey Vladimirov, PhD, is Head of HPC Research at Colfax
International. His primary interest is the application of modern
computing technologies to computationally demanding scientific
problems. Prior to joining Colfax, A. Vladimirov was involved in
computational astrophysics research at Stanford University, North
Carolina State University, and the Ioffe Institute in Russia, where
he studied cosmic rays, collisionless plasmas and the interstellar
medium using computer simulations.

Ryo Asai, is a Researcher at Colfax International. He develops
optimization methods for scientific applications targeting emerging
parallel computing platforms, computing accelerators and inter-
connect technologies. Ryo holds a B.S. degree in Physics from
University of California, Berkeley.

Vadim Karpusenko, PhD, is Principal HPC Research Engineer at
Colfax International involved in training and consultancy projects
on data mining, software development and statistical analysis of
complex systems. His research interests are in the area of physical
modeling with HPC clusters, highly parallel architectures, and code
optimization. Vadim holds a PhD from North Carolina State Uni-
versity for his research in in the field of computational biophysics
on the free energy and stability of helical secondary structures of
proteins.

Additional publications by these authors
related to Intel MIC architecture programming

may be found at
http://research.colfaxinternational.com/

http://research.colfaxinternational.com/

Acknowledgements

Second Edition

We cannot thank enough the people who have contributed their valuable time and ex-
pertise to write technical reviews of the 2nd edition of this book. They have provided
guidance, fixed misconceptions, future-proofed the messages and caught countless bugs:
Ilya Burylov, Gennady Fedorov, Alexandr Kalinkin, Alexandr Kobotov, Vadim
Pirogov (Intel/MKL), Joseph Curley (Intel), Rob Farber (TechEnablement.com),
Rakesh Krishnaiyer (Intel), Lawrence Meadows (Intel), John Pennycook (Intel),
Troy Porter (Stanford University), Frances Roth (Intel), Jason Sewall (Intel), Ger-
gana Slavova (Intel). Thank you all very much!

First Edition

Authors are sincerely grateful to James Reinders for supervising and directing the
creation of this book, Albert Lee for his help with editing and error checking, to spe-
cialists at Intel Corporation who contributed their time and shared with the authors
their expertise on the MIC architecture programming: Bob Davies, Shannon Cepeda,
Pradeep Dubey, Ronald Green, James Jeffers, Taylor Kidd, Rakesh Krishnaiyer,
Chris (CJ) Newburn, Kevin O’Leary, Zhang Zhang, and to a great number of people,
mostly from Colfax International and Intel, who have ensured that gears were turning
and bits were churning during the production of the book, including Rajesh Agny, Mani
Anandan, Joe Curley, Roger Herrick, Richard Jackson, Mike Lafferty, Thomas
Lee, Belinda Liviero, Gary Paek, Troy Porter, Tim Puett, John Rinehimer, Gau-
tam Shah, Manish Shah, Bruce Shiu, Jimmy Tran, Achim Wengeler, and Desmond
Yuen.

BRIEF TABLE OF CONTENTS v

1 Introduction 1
1.1 Intel Xeon Phi Coprocessors . 2
1.2 MIC Architecture: Developer’s Perspective 13
1.3 Applicability of the MIC Architecture 30
1.4 Preparing for Future Parallel Architectures 39
1.5 System Administration with Intel Xeon Phi Coprocessors 46

2 Programming Models 87
2.1 Native Applications and MPI . 88
2.2 Explicit Offload Model . 101
2.3 Shared Virtual Memory Model . 119
2.4 Using Multiple Coprocessors . 132
2.5 Offload Programming with OpenMP 4.0 148

3 Expressing Parallelism 153
3.1 Data Parallelism (Vectorization) . 154
3.2 Task Parallelism in Shared Memory: OpenMP 186
3.3 Task Parallelism with Intel Cilk Plus 212
3.4 Process Parallelism in Distributed Memory with MPI 229

4 Optimizing Parallel Applications 261
4.1 Optimization Roadmap for Intel Xeon Phi Coprocessors 261
4.2 Scalar and General Optimizations . 267
4.3 Optimizing Vectorization . 289
4.4 Optimization of Multi-Threading . 311
4.5 Memory Access Optimization . 356
4.6 Offload Traffic Control . 387
4.7 Optimization Strategies for MPI Applications 396

5 Software Development Tools 427
5.1 Intel Math Kernel Library . 427
5.2 Intel VTune Amplifier XE . 444

6 Summary and Resources 465
6.1 Parallel Programming and Intel Xeon Phi Coprocessors 465
6.2 Supplementary Code for Practical Exercises (“Labs”) 467
6.3 Colfax Developer Training . 470
6.4 Additional Resources . 471

Bibliography 475

c© Colfax International, 2013–2015

http://www.colfax-intl.com/

vii

Contents

1 Introduction 1
1.1 Intel Xeon Phi Coprocessors . 2

1.1.1 Technology Overview . 2
1.1.2 Conventional Programming, Portable Code 4
1.1.3 Heterogeneous Computing and Clustering 7
1.1.4 Intel Xeon Phi Product Family 8
1.1.5 Intel Xeon Processor E3, E5 and E7 Family 11

1.2 MIC Architecture: Developer’s Perspective 13
1.2.1 Knights Corner Die Organization 13
1.2.2 Core Specifications . 15
1.2.3 Memory Hierarchy and Cache Properties 17
1.2.4 Integration into the Host System through MPSS 20
1.2.5 Networking with Coprocessors in Clusters 22
1.2.6 File I/O on Coprocessors . 24
1.2.7 Common Software Development Tools 25
1.2.8 Intel Xeon Processors versus Intel Xeon Phi Coprocessors: De-

veloper Experience . 28
1.3 Applicability of the MIC Architecture 30

1.3.1 Task Parallelism . 30
1.3.2 Data-Parallel Component . 32
1.3.3 Memory Access Pattern . 34
1.3.4 PCIe Bandwidth Considerations 36

1.4 Preparing for Future Parallel Architectures 39
1.4.1 Exascale Computing for the Rest of Us 39
1.4.2 Second Generation MIC Processor, KNL 41
1.4.3 Future-Proof Development Options 44

1.5 System Administration with Intel Xeon Phi Coprocessors 46
1.5.1 Hardware Compatibility . 46
1.5.2 Operating Systems . 47
1.5.3 Installation and Minimal Configuration of MPSS 48
1.5.4 Controlling the MPSS service 49
1.5.5 Integration of MPSS with InfiniBand: OFED 50

c© Colfax International, 2013–2015

http://www.colfax-intl.com/

viii CONTENTS

1.5.6 Restoring MPSS Functionality after Kernel Updates 51
1.5.7 Installation of Intel Compilers 52
1.5.8 Installing the OpenCL Runtime and CodeBuilder 54
1.5.9 Quick Functionality Check . 56
1.5.10 Overview of Intel MPSS Tools 58
1.5.11 miccheck: Basic Troubleshooting 59
1.5.12 micctrl: Coprocessor OS Configuration 61
1.5.13 micflash: Coprocessor Firmware Updates 64
1.5.14 micinfo: Coprocesssor, Firmware, Driver Info 65
1.5.15 micrasd: Reliability Monitor, Error Logging 67
1.5.16 micsmc: Real-Time Monitoring Tool 68
1.5.17 User Management on Intel Xeon Phi Coprocessors 71
1.5.18 SSH Client Configuration . 76
1.5.19 NFS Mounting a Host Export 77
1.5.20 Sharing a Local Disk with VirtIO Block Device 80
1.5.21 Bridged Networking in Clusters with Coprocessors 82
1.5.22 Peer to Peer Communication between Coprocessors 84
1.5.23 Manual Customization of the coprocessor OS 86

2 Programming Models 87
2.1 Native Applications and MPI . 88

2.1.1 Using Compiler Argument -mmic to Compile Native Applica-
tions for Intel R© Xeon PhiTM Coprocessors 88

2.1.2 Running Native Applications on Using SSH 90
2.1.3 Running Native Applications with micnativeloadex 91
2.1.4 Monitoring the Coprocessor Activity with micsmc 93
2.1.5 MPI Applications on Intel Xeon Phi Coprocessors 96

2.2 Explicit Offload Model . 101
2.2.1 “Hello World” Example in the Explicit Offload Model 101
2.2.2 Offloading Functions . 103
2.2.3 Offloading Bitwise-Copyable Data 104
2.2.4 Data and Memory Persistence Between Offloads 106
2.2.5 Asynchronous Offload . 108
2.2.6 Target-Specific Code . 110
2.2.7 Optional and Conditional Offload, Fall-Back to Host 111
2.2.8 Offload Diagnostics . 113
2.2.9 Environment Variables and MIC_ENV_PREFIX 114

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition

ix

2.2.10 Proxy Console I/O . 116
2.2.11 Review: Explicit Offload Model 117

2.3 Shared Virtual Memory Model . 119
2.3.1 Offloading Functions . 121
2.3.2 Sharing and Offloading Objects 122
2.3.3 Dynamic Allocation in Shared Virtual Memory 123
2.3.4 Classes in Shared Virtual Memory 125
2.3.5 Placement Operator new for Shared Classes 128
2.3.6 Asynchronous Offload . 130
2.3.7 Summary for Shared Virtual Memory Model 131

2.4 Using Multiple Coprocessors . 132
2.4.1 Multiple Coprocessors with Explicit Offload 133
2.4.2 Multiple Coprocessors in the Shared Virtual Memory Model . . 138
2.4.3 Multiple Coprocessors with MPI 141

2.5 Offload Programming with OpenMP 4.0 148
2.5.1 Offload with Pragma Target . 149
2.5.2 Data Persistence with Pragma Target Data 150

3 Expressing Parallelism 153
3.1 Data Parallelism (Vectorization) . 154

3.1.1 Vector Instructions: Concept and History 154
3.1.2 Intel Architecture Vector Instruction Sets 155
3.1.3 Is Your Code Using Vectorization? 156
3.1.4 Data Alignment . 157
3.1.5 Vector Instructions using Inline Assembly, Compiler Intrinsics

and Class Libraries . 163
3.1.6 Automatic Vectorization of Loops 166
3.1.7 Extensions for Array Notation in Intel Cilk Plus 171
3.1.8 SIMD-Enabled Functions . 173
3.1.9 Assumed Vector Dependence 175
3.1.10 Vectorization Pragmas, Keywords and Compiler Arguments. . . 178
3.1.11 Exclusive Features of the IMCI Instruction Set 181

3.2 Task Parallelism in Shared Memory: OpenMP 186
3.2.1 Multiple Cores and Task Parallelism 186
3.2.2 “Hello World” with OpenMP 188
3.2.3 For-Loops in OpenMP . 190
3.2.4 Tasks in OpenMP . 194

c© Colfax International, 2013–2015

http://www.colfax-intl.com/

x CONTENTS

3.2.5 Shared and Private Variables 198
3.2.6 Synchronization: Avoiding Unpredictable Behavior 202
3.2.7 Reduction: Avoiding Synchronization 209

3.3 Task Parallelism with Intel Cilk Plus 212
3.3.1 “Hello World” in Intel Cilk Plus 213
3.3.2 For-Loops in Intel Cilk Plus 215
3.3.3 Fork-Join Model and Spawning in Intel Cilk Plus 217
3.3.4 Synchronization with Spawned Tasks 219
3.3.5 Reduction: Avoiding Synchronization 221
3.3.6 OpenMP versus Intel Cilk Plus 226
3.3.7 Additional Resources on Shared Memory Parallelism 227

3.4 Process Parallelism in Distributed Memory with MPI 229
3.4.1 Parallel Computing in Clusters with Multi-Core and Many-Core

Nodes . 229
3.4.2 Program Structure in MPI . 235
3.4.3 Point-to-Point Communication 238
3.4.4 MPI Communication Modes 244
3.4.5 Collective Communication and Reduction 253
3.4.6 Further Reading . 260

4 Optimizing Parallel Applications 261
4.1 Optimization Roadmap for Intel Xeon Phi Coprocessors 261

4.1.1 Optimization Checklist . 261
4.1.2 Expectations . 263
4.1.3 Benchmark Methodology . 264
4.1.4 Benchmark Computing System 266

4.2 Scalar and General Optimizations . 267
4.2.1 Compiler Controls for Optimization 267
4.2.2 Compiler Controls for Precision 269
4.2.3 Optimizing Arithmetic Expressions 275
4.2.4 Programming Practices for High Performance 282
4.2.5 Math Kernel Library for Scalar Arithmetic 287

4.3 Optimizing Vectorization . 289
4.3.1 Diagnosing the Utilization of Vector Instructions 289
4.3.2 Unit-Stride Access and Spatial Locality of Reference 290
4.3.3 Regularizing Vectorization Pattern 295
4.3.4 Compiler Hints: Aligned Data Notice 302

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition

xi

4.3.5 Compiler Hints: Pointer Disambiguation 303
4.3.6 Strip-Mining for Vectorization 306
4.3.7 Additional “Tuning Knobs” for Vectorization 310

4.4 Optimization of Multi-Threading . 311
4.4.1 Avoiding Synchronization through Parallel Reduction 311
4.4.2 Elimination of False Sharing with Padding 316
4.4.3 Resolving Load Imbalance with Scheduling Control 321
4.4.4 Dealing with Insufficient Parallelism 329
4.4.5 Thread Affinity Optimization 341
4.4.6 Diagnosing Parallel Efficiency, Scalability Tests 354

4.5 Memory Access Optimization . 356
4.5.1 General Considerations . 356
4.5.2 Loop Tiling . 362
4.5.3 Cache-Oblivious Recursive Methods 371
4.5.4 First Touch Allocation and NUMA Policy 376
4.5.5 Cross-Procedural Loop Fusion 380
4.5.6 Advanced Topic: Prefetching 385

4.6 Offload Traffic Control . 387
4.6.1 Bandwidth Optimization with Persistent Buffers 387
4.6.2 Masking Offload Latency with Double Buffering 393

4.7 Optimization Strategies for MPI Applications 396
4.7.1 Static Load Balancing . 397
4.7.2 Dynamic Work Scheduling . 407
4.7.3 Multi-threading within MPI Processes 414
4.7.4 Fabric Control . 420

5 Software Development Tools 427
5.1 Intel Math Kernel Library . 427

5.1.1 Functions Offered by MKL . 428
5.1.2 Linking Applications with MKL. Link Line Advisor 430
5.1.3 MKL on Intel Xeon Phi Coprocessors 432
5.1.4 Automatic offload . 433
5.1.5 Compiler-Assisted Offload . 439
5.1.6 Native Execution . 439
5.1.7 Benchmarks of Select MKL Functions 440

5.2 Intel VTune Amplifier XE . 444
5.2.1 System Administration . 445

c© Colfax International, 2013–2015

http://www.colfax-intl.com/

xii CONTENTS

5.2.2 Running VTune . 446
5.2.3 Project Management . 447
5.2.4 Analysis on the Host CPU . 448
5.2.5 Analysis on an Intel Xeon Phi Coprocessor 459

6 Summary and Resources 465
6.1 Parallel Programming and Intel Xeon Phi Coprocessors 465
6.2 Supplementary Code for Practical Exercises (“Labs”) 467
6.3 Colfax Developer Training . 470
6.4 Additional Resources . 471

Bibliography 475

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition

xiii

Foreword to the First Edition

We live in exciting times; the amount of computing power available for sciences and engi-
neering is reaching enormous heights through parallel computing. Parallel computing is driving
discovery in many endeavors, but remains a relatively new area of computing. As such, soft-
ware developers are part of an industry that is still growing and evolving as parallel computing
becomes more commonplace.

The added challenges involved in parallel programming are being eased by four key trends
in the industry: emergence of better tools, wide-spread usage of better programming models,
availability of significantly more hardware parallelism, and more teaching material promising to
yield better-educated programmers. We have seen recent innovations in tools and programming
models including OpenMP and Intel Threading Building Blocks. Now, the Intel R© Xeon Phi

TM

coprocessor certainly provides a huge leap in hardware parallelism with its general purpose
hardware thread counts being as high as 244 (up to 61 cores, 4 threads each).

This leaves the challenge of creating better-educated programmers. This handbook from Col-
fax, with a subtitle of “Handbook on the Development and Optimization of Parallel Applications
for Intel Xeon Processors and Intel Xeon Phi Coprocessors” is an example-based course for the
optimization of parallel applications for platforms with Intel Xeon processors and Intel Xeon Phi
coprocessors.

This handbook serves as practical training covering understandable computing problems for
C and C++ programmers. The authors at Colfax have developed sample problems to illustrate
key challenges and offer their own guidelines to assist in optimization work. They provide easy
to follow instructions that allow the reader to understand solutions to the problems posed as well
as inviting the reader to experiment further. Colfax’s examples and guidelines complement those
found in our recent book on programming the Intel Xeon Phi Coprocessor by Jim Jeffers and
myself by adding another perspective to the teaching materials available from which to learn.

In the quest to learn, it takes multiple teaching methods to reach everyone. I applaud these
authors in their efforts to bring forth more examples to enable either self-directed or classroom
oriented hands-on learning of the joys of parallel programming.

James R. Reinders
Co-author of “Intel R© Xeon Phi

TM
Coprocessor High Performance Programming"

c© 2013, Morgan Kaufmann Publishers
Intel Corporation
March 2013

c© Colfax International, 2013–2015

http://www.colfax-intl.com/

xv

Preface to the Second Edition

A lot has happened in Intel’s “parallel universe” since the publication of the first
edition of this book in March 2013. The family of Intel Xeon Phi coprocessors has grown
to three series: 3100, 5100 and 7100, offering a range of performance tiers and prices.
Active-cooling Intel Xeon Phi coprocessors were introduced, allowing workstation users
to take advantage of the Intel Many Integrated Core (MIC) architecture. Plans were
released for future Intel MIC architecture products, based on the Knights Landing chip,
and capable of acting as a stand-alone CPU. In the CPU domain, Intel Xeon processors
based on the Haswell architecture were released, supporting a new instruction set AVX2
and new functionality.

On the software tools side, the Intel Parallel Studio XE 2015 suite was improved to
accommodate the new parallel framework standards: OpenMP 4.0 and MPI 3.0. The
evolution of Intel VTune Amplifier XE has added many useful functions for automated
diagnostics of performance issues. Intel compilers produce more user-friendly optimiza-
tion reports than before, and have become even smarter about automatic vectorization
and other optimizations.

The work in the users’ domain did not stand still, either. With a large number of
case studies and research articles on applications for the Intel MIC architecture, it is
accurate to say that the developer ecosystem has been established. We are proud to say
that Colfax has made a considerable contribution to this progress with the first edition
of “Parallel Programmin and Optimization with Intel Xeon Phi Coprocessors”. In the
years 2013 and 2014, over 1000 science and industry experts at tens of locations across
North America have been students of the Colfax Developer Training based on this book.
Their experience and feedback, along with the innovations in the Intel tools, have built
a solid case for the publication of the second edition of “Parallel Programming and
Optimization with Intel Xeon Phi Coprocessors”.

Among the numerous new features of the second edition, the ones that stand out are:

1. The details unveiled by Intel of the present and future MIC processors, including
Knights Landing;

2. Discussion of configuration and system administration of clusters with Intel Xeon
Phi coprocessors, including InfiniBand support, bridged network configuration
and storage setup;

c© Colfax International, 2013–2015

http://www.colfax-intl.com/

xvi PREFACE TO THE SECOND EDITION

3. Additional applications based on case studies of our research in 2013–2014
included in the text as references, as well as practical exercises;

4. Console listings, example codes and hyperlinks to online manuals accurate as of
Intel Parallel Studio XE 2015, Intel MPSS 3.4.1 and CentOS 7.0 Linux;

5. New programming models made available in OpenMP 4.0;

6. Deeper review of the Intel Math Kernel Library support for the MIC architecture;

7. More convenient page format and font size for on-screen reading, and

8. Numerous updates to the text improving the clarity and depth of the discussion.

We hope that you find this book to be a valuable resource on “all things Xeon Phi”,
and, as always, we value your feedback. The HPC research department of Colfax
International can be reached by email at phi@colfax-intl.com, and the latest updates on
our work can be found at research.colfaxinternational.com.

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition

mailto:phi@colfax-intl.com
http://research.colfaxinternational.com

xvii

Preface to the First Edition

Welcome to the Colfax Developer Training! You are holding in your hands or
browsing on your computer screen a comprehensive set of training materials for this
training program. This document will guide you to the mastery of parallel programming
with Intel R© Xeon R© family products: Intel R© Xeon R© processors and Intel R© Xeon PhiTM

coprocessors. The curriculum includes a detailed presentation of the programming
paradigm for Intel Xeon product family, optimization guidelines, and hands-on exercises
on systems equipped with Intel Xeon Phi coprocessors, as well as instructions on using
Intel R© software development tools and libraries included in Intel R© Parallel Studio XE.

These training materials are targeted toward developers familiar with C/C++ program-
ming in Linux. Developers with little parallel programming experience will be able to
grasp the core concepts of this subject from the detailed commentary in Chapter 3. For
advanced developers familiar with multi-core and/or GPU programming, the training
offers materials specific to the Intel compilers and Intel Xeon family products, as well
as optimization advice pertinent to the Many Integrated Core (MIC) architecture.

We have written these materials relying on key elements for efficient learning: practice
and repetition. As a consequence, the reader will find a large number of code listings in
the main section of these materials. In the extended Appendix, we provided numerous
hands-on exercises that one can complete either under an instructor’s supervision, or
autonomously in a self-study training.

This document is different from a typical book on computer science, because we
intended it to be used as a lecture plan in an intensive learning course. Speaking in
programming terms, a typical book traverses material with a “depth-first algorithm”,
describing every detail of each method or concept before moving on to the next method.
In contrast, this document traverses the scope of material with a “breadth-first” algorithm.
First, we give an overview of multiple methods to address a certain issue. In the
subsequent chapter, we re-visit these methods, this time in greater detail. We may go
into even more depth down the line. In this way, we expect that students will have
enough time to absorb and comprehend the variety of programming and optimization
methods presented here. The course road map is outlined in the following list.

• Chapter 1 presents the Intel Xeon Phi architecture overview and the environment
provided by the MIC Platform Software Stack (MPSS) and Intel Parallel Studio
XE on Many Integrated Core architecture (MIC). The purpose of Chapter 1 is

c© Colfax International, 2013–2015

http://www.colfax-intl.com/

xviii PREFACE TO THE FIRST EDITION

to outline what users may expect from Intel Xeon Phi coprocessors (technical
specifications, software stack, application domain).

• Chapter 2 allows the reader to experience the simplicity of Intel Xeon Phi usage
early on in the program. It describes the operating system running on the coproces-
sor, with the compilation of native applications, and with the language extensions
and CPU-centric codes that utilize Intel Xeon Phi coprocessors: offload and virtual-
shared memory programming models. In a nutshell, Chapter 2 demonstrates how
to write serial code that executes on Intel Xeon Phi coprocessors.

• Chapter 3 introduces Single Instruction Multiple Data (SIMD) parallelism and
automatic vectorization, thread parallelism with OpenMP and Intel Cilk Plus, and
distributed-memory parallelization with MPI. In brief, Chapter 3 shows how to
write parallel code (vectorization, OpenMP, Intel Cilk Plus, MPI).

• Chapter 4 re-iterates the material of Chapter 3, this time delving deeper into the
topics of parallel programming and providing example-based optimization advice,
including the usage of the Intel Math Kernel Library. This chapter is the core of
the training. The topics discussed in this Chapter 4 include:

i) scalar optimizations;
ii) improving data structures for streaming, unit-stride, local memory access;

iii) guiding automatic vectorization with language constructs and compiler hints;
iv) reducing synchronization in task-parallel algorithms by the use of reduction;
v) avoiding false sharing;

vi) increasing arithmetic intensity and reducing cache misses by loop blocking
and recursion;

vii) exposing the full scope of available parallelism;
viii) controlling process and thread affinity in OpenMP and MPI;

ix) reducing communication through data persistence on coprocessor;
x) scheduling practices for load balancing across cores and MPI processes;

xi) optimized Intel Math Kernel Library function usage, and other.

If Chapter 3 demonstrated how to write parallel code for Intel Xeon Phi coproces-
sors, then Chapter 4 shows how to make this parallel code run fast.

• Chapter 6 summarizes the course and provides pointers to additional resources.

Throughout the training, we emphasize the concept of portable parallel code. Portable
parallelism can be achieved by designing codes in a way that exposes the data and task

Parallel Programming and Optimization with Intel Xeon Phi Coprocessors. Second Edition

xix

parallelism of the underlying algorithm, and by using language extensions such as
OpenMP pragmas and Intel Cilk Plus. The resulting code can be run on processors as
well as on coprocessors, and can be ported with only recompilation to future generations
of multi- and many-core processors with SIMD capabilities. Even though the Colfax
Developer Training program touches on low-level programming using intrinsic functions,
it focuses on achieving high performance by writing highly parallel code and utilizing
the Intel compiler’s automatic vectorization functionality and parallel frameworks.

The handbook of the Colfax Developer Training is an essential component of a
comprehensive, hands-on course. While the handbook has value outside a training
environment as a reference guide, the full utility of the training is greatly enhanced by
students’ access to individual computing systems equipped with Intel Xeon processors,
Intel Xeon Phi coprocessors and Intel software development tools. Please check the Web
page of the Colfax Developer training for additional information: http://www.colfax-
intl.com/xeonphi/

Welcome to the exciting world of parallel programming!

c© Colfax International, 2013–2015

http://www.colfax-intl.com/xeonphi/
http://www.colfax-intl.com/xeonphi/
http://www.colfax-intl.com/

THIS IS A PREVIEW

COMPLETE BOOK
IS AVAILABLE AT

XEONPHI.COM/BOOK

508 PAGES
electronic or print edition

http://xeonphi.com/book

