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Foreword to the First Edition

We live in exciting times; the amount of computing power available for sciences and engi-
neering is reaching enormous heights through parallel computing. Parallel computing is driving
discovery in many endeavors, but remains a relatively new area of computing. As such, soft-
ware developers are part of an industry that is still growing and evolving as parallel computing
becomes more commonplace.

The added challenges involved in parallel programming are being eased by four key trends
in the industry: emergence of better tools, wide-spread usage of better programming models,
availability of significantly more hardware parallelism, and more teaching material promising to
yield better-educated programmers. We have seen recent innovations in tools and programming
models including OpenMP and Intel Threading Building Blocks. Now, the Intel R© Xeon Phi

TM

coprocessor certainly provides a huge leap in hardware parallelism with its general purpose
hardware thread counts being as high as 244 (up to 61 cores, 4 threads each).

This leaves the challenge of creating better-educated programmers. This handbook from Col-
fax, with a subtitle of “Handbook on the Development and Optimization of Parallel Applications
for Intel Xeon Processors and Intel Xeon Phi Coprocessors” is an example-based course for the
optimization of parallel applications for platforms with Intel Xeon processors and Intel Xeon Phi
coprocessors.

This handbook serves as practical training covering understandable computing problems for
C and C++ programmers. The authors at Colfax have developed sample problems to illustrate
key challenges and offer their own guidelines to assist in optimization work. They provide easy
to follow instructions that allow the reader to understand solutions to the problems posed as well
as inviting the reader to experiment further. Colfax’s examples and guidelines complement those
found in our recent book on programming the Intel Xeon Phi Coprocessor by Jim Jeffers and
myself by adding another perspective to the teaching materials available from which to learn.

In the quest to learn, it takes multiple teaching methods to reach everyone. I applaud these
authors in their efforts to bring forth more examples to enable either self-directed or classroom
oriented hands-on learning of the joys of parallel programming.

James R. Reinders
Co-author of “Intel R© Xeon Phi

TM
Coprocessor High Performance Programming"

c© 2013, Morgan Kaufmann Publishers
Intel Corporation
March 2013
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Preface to the Second Edition

A lot has happened in Intel’s “parallel universe” since the publication of the first
edition of this book in March 2013. The family of Intel Xeon Phi coprocessors has grown
to three series: 3100, 5100 and 7100, offering a range of performance tiers and prices.
Active-cooling Intel Xeon Phi coprocessors were introduced, allowing workstation users
to take advantage of the Intel Many Integrated Core (MIC) architecture. Plans were
released for future Intel MIC architecture products, based on the Knights Landing chip,
and capable of acting as a stand-alone CPU. In the CPU domain, Intel Xeon processors
based on the Haswell architecture were released, supporting a new instruction set AVX2
and new functionality.

On the software tools side, the Intel Parallel Studio XE 2015 suite was improved to
accommodate the new parallel framework standards: OpenMP 4.0 and MPI 3.0. The
evolution of Intel VTune Amplifier XE has added many useful functions for automated
diagnostics of performance issues. Intel compilers produce more user-friendly optimiza-
tion reports than before, and have become even smarter about automatic vectorization
and other optimizations.

The work in the users’ domain did not stand still, either. With a large number of
case studies and research articles on applications for the Intel MIC architecture, it is
accurate to say that the developer ecosystem has been established. We are proud to say
that Colfax has made a considerable contribution to this progress with the first edition
of “Parallel Programmin and Optimization with Intel Xeon Phi Coprocessors”. In the
years 2013 and 2014, over 1000 science and industry experts at tens of locations across
North America have been students of the Colfax Developer Training based on this book.
Their experience and feedback, along with the innovations in the Intel tools, have built
a solid case for the publication of the second edition of “Parallel Programming and
Optimization with Intel Xeon Phi Coprocessors”.

Among the numerous new features of the second edition, the ones that stand out are:

1. The details unveiled by Intel of the present and future MIC processors, including
Knights Landing;

2. Discussion of configuration and system administration of clusters with Intel Xeon
Phi coprocessors, including InfiniBand support, bridged network configuration
and storage setup;
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3. Additional applications based on case studies of our research in 2013–2014
included in the text as references, as well as practical exercises;

4. Console listings, example codes and hyperlinks to online manuals accurate as of
Intel Parallel Studio XE 2015, Intel MPSS 3.4.1 and CentOS 7.0 Linux;

5. New programming models made available in OpenMP 4.0;

6. Deeper review of the Intel Math Kernel Library support for the MIC architecture;

7. More convenient page format and font size for on-screen reading, and

8. Numerous updates to the text improving the clarity and depth of the discussion.

We hope that you find this book to be a valuable resource on “all things Xeon Phi”,
and, as always, we value your feedback. The HPC research department of Colfax
International can be reached by email at phi@colfax-intl.com, and the latest updates on
our work can be found at research.colfaxinternational.com.
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Preface to the First Edition

Welcome to the Colfax Developer Training! You are holding in your hands or
browsing on your computer screen a comprehensive set of training materials for this
training program. This document will guide you to the mastery of parallel programming
with Intel R© Xeon R© family products: Intel R© Xeon R© processors and Intel R© Xeon PhiTM

coprocessors. The curriculum includes a detailed presentation of the programming
paradigm for Intel Xeon product family, optimization guidelines, and hands-on exercises
on systems equipped with Intel Xeon Phi coprocessors, as well as instructions on using
Intel R© software development tools and libraries included in Intel R© Parallel Studio XE.

These training materials are targeted toward developers familiar with C/C++ program-
ming in Linux. Developers with little parallel programming experience will be able to
grasp the core concepts of this subject from the detailed commentary in Chapter 3. For
advanced developers familiar with multi-core and/or GPU programming, the training
offers materials specific to the Intel compilers and Intel Xeon family products, as well
as optimization advice pertinent to the Many Integrated Core (MIC) architecture.

We have written these materials relying on key elements for efficient learning: practice
and repetition. As a consequence, the reader will find a large number of code listings in
the main section of these materials. In the extended Appendix, we provided numerous
hands-on exercises that one can complete either under an instructor’s supervision, or
autonomously in a self-study training.

This document is different from a typical book on computer science, because we
intended it to be used as a lecture plan in an intensive learning course. Speaking in
programming terms, a typical book traverses material with a “depth-first algorithm”,
describing every detail of each method or concept before moving on to the next method.
In contrast, this document traverses the scope of material with a “breadth-first” algorithm.
First, we give an overview of multiple methods to address a certain issue. In the
subsequent chapter, we re-visit these methods, this time in greater detail. We may go
into even more depth down the line. In this way, we expect that students will have
enough time to absorb and comprehend the variety of programming and optimization
methods presented here. The course road map is outlined in the following list.

• Chapter 1 presents the Intel Xeon Phi architecture overview and the environment
provided by the MIC Platform Software Stack (MPSS) and Intel Parallel Studio
XE on Many Integrated Core architecture (MIC). The purpose of Chapter 1 is
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to outline what users may expect from Intel Xeon Phi coprocessors (technical
specifications, software stack, application domain).

• Chapter 2 allows the reader to experience the simplicity of Intel Xeon Phi usage
early on in the program. It describes the operating system running on the coproces-
sor, with the compilation of native applications, and with the language extensions
and CPU-centric codes that utilize Intel Xeon Phi coprocessors: offload and virtual-
shared memory programming models. In a nutshell, Chapter 2 demonstrates how
to write serial code that executes on Intel Xeon Phi coprocessors.

• Chapter 3 introduces Single Instruction Multiple Data (SIMD) parallelism and
automatic vectorization, thread parallelism with OpenMP and Intel Cilk Plus, and
distributed-memory parallelization with MPI. In brief, Chapter 3 shows how to
write parallel code (vectorization, OpenMP, Intel Cilk Plus, MPI).

• Chapter 4 re-iterates the material of Chapter 3, this time delving deeper into the
topics of parallel programming and providing example-based optimization advice,
including the usage of the Intel Math Kernel Library. This chapter is the core of
the training. The topics discussed in this Chapter 4 include:

i) scalar optimizations;
ii) improving data structures for streaming, unit-stride, local memory access;

iii) guiding automatic vectorization with language constructs and compiler hints;
iv) reducing synchronization in task-parallel algorithms by the use of reduction;
v) avoiding false sharing;

vi) increasing arithmetic intensity and reducing cache misses by loop blocking
and recursion;

vii) exposing the full scope of available parallelism;
viii) controlling process and thread affinity in OpenMP and MPI;

ix) reducing communication through data persistence on coprocessor;
x) scheduling practices for load balancing across cores and MPI processes;

xi) optimized Intel Math Kernel Library function usage, and other.

If Chapter 3 demonstrated how to write parallel code for Intel Xeon Phi coproces-
sors, then Chapter 4 shows how to make this parallel code run fast.

• Chapter 6 summarizes the course and provides pointers to additional resources.

Throughout the training, we emphasize the concept of portable parallel code. Portable
parallelism can be achieved by designing codes in a way that exposes the data and task
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parallelism of the underlying algorithm, and by using language extensions such as
OpenMP pragmas and Intel Cilk Plus. The resulting code can be run on processors as
well as on coprocessors, and can be ported with only recompilation to future generations
of multi- and many-core processors with SIMD capabilities. Even though the Colfax
Developer Training program touches on low-level programming using intrinsic functions,
it focuses on achieving high performance by writing highly parallel code and utilizing
the Intel compiler’s automatic vectorization functionality and parallel frameworks.

The handbook of the Colfax Developer Training is an essential component of a
comprehensive, hands-on course. While the handbook has value outside a training
environment as a reference guide, the full utility of the training is greatly enhanced by
students’ access to individual computing systems equipped with Intel Xeon processors,
Intel Xeon Phi coprocessors and Intel software development tools. Please check the Web
page of the Colfax Developer training for additional information: http://www.colfax-
intl.com/xeonphi/

Welcome to the exciting world of parallel programming!
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