
ONEAPI
SINGLE PROGRAMMINGMODEL TO DELIVER CROSS-ARCHITECTURE PERFORMANCE

MODULE 1
GETTING STARTEDWITH ONEAPI



ONEAPI TRAINING SERIES
2

▷ Module 1: Getting Started with oneAPI
▷ Module 2: Introduction to DPC++
▷ Module 3: Fundamentals of DPC++, part 1 of 2
▷ Module 4: Fundamentals of DPC++, part 2 of 2
▷ Modules 5+: Deeper dives into specific DPC++ features,
oneAPI libraries and tools

https://oneapi.com
https://software.intel.com/en-us/oneapi

https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

oneAPI module 1: Getting started with oneAPI 2 / 48

https://oneapi.com
https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1


1 Programming in a Heterogeneous World

2 How oneAPI addresses our Heterogeneous World

3 Hello Doubler - simple DPC++ coding example

4 What is SYCL?

5 DevCloud - Try oneAPI easily

6 oneAPI - Why and How

7 What is Data Parallel C++?

oneAPI module 1: Getting started with oneAPI 3 / 48



RESOURCES
4

▷ Book (Chapters 1-4 Preview)
▷ oneAPI Toolkit(s)
▷ Training, Support, Forums,
Example Code

All available
Free

https://software.intel.com/en-us/oneapi https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

oneAPI module 1: Getting started with oneAPI 4 / 48

https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1


§1. PROGRAMMING IN A HETEROGENEOUSWORLD



1 Programming in a Heterogeneous World

2 How oneAPI addresses our Heterogeneous World

3 Hello Doubler - simple DPC++ coding example

4 What is SYCL?

5 DevCloud - Try oneAPI easily

6 oneAPI - Why and How

7 What is Data Parallel C++?

oneAPI module 1: Getting started with oneAPI 6 / 48



DIVERSEWORKLOADS DEMAND DIVERSE ARCHITECTURES
7

The future is adiversemix of scalar, vector, matrix, and spatial
architectures deployed in CPU, GPU, AI, FPGA, and other accelerators.

oneAPI module 1: Getting started with oneAPI 7 / 48



CHALLENGE: PROGRAMMING IN A HETEROGENEOUSWORLD
8

▷ Diverse set of data-centric
hardware

▷ No common programming
language or APIs

▷ Inconsistent tool support
across platforms

▷ Proprietary solutions on
individual platforms

▷ Each platform requires
unique software investment

oneAPI module 1: Getting started with oneAPI 8 / 48



CHALLENGE: PROGRAMMING IN A HETEROGENEOUSWORLD
8

▷ Diverse set of data-centric
hardware

▷ No common programming
language or APIs

▷ Inconsistent tool support
across platforms

▷ Proprietary solutions on
individual platforms

▷ Each platform requires
unique software investment

oneAPI module 1: Getting started with oneAPI 8 / 48



CHALLENGE: PROGRAMMING IN A HETEROGENEOUSWORLD
8

▷ Diverse set of data-centric
hardware

▷ No common programming
language or APIs

▷ Inconsistent tool support
across platforms

▷ Proprietary solutions on
individual platforms

▷ Each platform requires
unique software investment

oneAPI module 1: Getting started with oneAPI 8 / 48



CHALLENGE: PROGRAMMING IN A HETEROGENEOUSWORLD
8

▷ Diverse set of data-centric
hardware

▷ No common programming
language or APIs

▷ Inconsistent tool support
across platforms

▷ Proprietary solutions on
individual platforms

▷ Each platform requires
unique software investment

oneAPI module 1: Getting started with oneAPI 8 / 48



CHALLENGE: PROGRAMMING IN A HETEROGENEOUSWORLD
8

▷ Diverse set of data-centric
hardware

▷ No common programming
language or APIs

▷ Inconsistent tool support
across platforms

▷ Proprietary solutions on
individual platforms

▷ Each platform requires
unique software investment

S V M S

oneAPI module 1: Getting started with oneAPI 8 / 48



§2. HOWONEAPI ADDRESSES OUR HETEROGENEOUSWORLD



1 Programming in a Heterogeneous World

2 How oneAPI addresses our Heterogeneous World

3 Hello Doubler - simple DPC++ coding example

4 What is SYCL?

5 DevCloud - Try oneAPI easily

6 oneAPI - Why and How

7 What is Data Parallel C++?

oneAPI module 1: Getting started with oneAPI 10 / 48



INTEL'S ONEAPI CORE CONCEPT
11

▷ Project oneAPI delivers a unified
programming model to simplify
development across diverse
architectures

▷ Common developer experience
across SVMS

▷ Uncompromised native high-level
language performance

▷ Unified language and libraries for
expressing parallelism

▷ Support for CPU, GPU, AI,
and FPGA

▷ Based on industry
standards and open
specifications

oneAPI module 1: Getting started with oneAPI 11 / 48



INTEL'S ONEAPI CORE CONCEPT
11

▷ Project oneAPI delivers a unified
programming model to simplify
development across diverse
architectures

▷ Common developer experience
across SVMS

▷ Uncompromised native high-level
language performance

▷ Unified language and libraries for
expressing parallelism

▷ Support for CPU, GPU, AI,
and FPGA

▷ Based on industry
standards and open
specifications

oneAPI module 1: Getting started with oneAPI 11 / 48



INTEL'S ONEAPI CORE CONCEPT
11

▷ Project oneAPI delivers a unified
programming model to simplify
development across diverse
architectures

▷ Common developer experience
across SVMS

▷ Uncompromised native high-level
language performance

▷ Unified language and libraries for
expressing parallelism

▷ Support for CPU, GPU, AI,
and FPGA

▷ Based on industry
standards and open
specifications

oneAPI module 1: Getting started with oneAPI 11 / 48



INTEL'S ONEAPI CORE CONCEPT
11

▷ Project oneAPI delivers a unified
programming model to simplify
development across diverse
architectures

▷ Common developer experience
across SVMS

▷ Uncompromised native high-level
language performance

▷ Unified language and libraries for
expressing parallelism

▷ Support for CPU, GPU, AI,
and FPGA

▷ Based on industry
standards and open
specifications

oneAPI module 1: Getting started with oneAPI 11 / 48



INTEL'S ONEAPI CORE CONCEPT
11

▷ Project oneAPI delivers a unified
programming model to simplify
development across diverse
architectures

▷ Common developer experience
across SVMS

▷ Uncompromised native high-level
language performance

▷ Unified language and libraries for
expressing parallelism

▷ Support for CPU, GPU, AI,
and FPGA

▷ Based on industry
standards and open
specifications

oneAPI module 1: Getting started with oneAPI 11 / 48



INTEL'S ONEAPI CORE CONCEPT
11

▷ Project oneAPI delivers a unified
programming model to simplify
development across diverse
architectures

▷ Common developer experience
across SVMS

▷ Uncompromised native high-level
language performance

▷ Unified language and libraries for
expressing parallelism

▷ Support for CPU, GPU, AI,
and FPGA

▷ Based on industry
standards and open
specifications

oneAPI module 1: Getting started with oneAPI 11 / 48



INTEL'S ONEAPI CORE CONCEPT
11

▷ Project oneAPI delivers a unified
programming model to simplify
development across diverse
architectures

▷ Common developer experience
across SVMS

▷ Uncompromised native high-level
language performance

▷ Unified language and libraries for
expressing parallelism

▷ Support for CPU, GPU, AI,
and FPGA

▷ Based on industry
standards and open
specifications

oneAPI module 1: Getting started with oneAPI 11 / 48



PROTECT PROGRAMMING INVESTMENTS
12

oneAPI module 1: Getting started with oneAPI 12 / 48



GOOD PLAN: LET ALL LIGHTS SHINE
13

▷ Allowing all ?PUs to shine should yield better results than
programming approaches that focus on highlighting a
particular PU over all others.

▷ Programmers want to write a single portable program that
uses ALL resources in the heterogeneous platform.

oneAPI module 1: Getting started with oneAPI 13 / 48



GOOD PLAN: LET ALL LIGHTS SHINE
13

▷ Allowing all ?PUs to shine should yield better results than
programming approaches that focus on highlighting a
particular PU over all others.

▷ Programmers want to write a single portable program that
uses ALL resources in the heterogeneous platform.

oneAPI module 1: Getting started with oneAPI 13 / 48



GOOD PLAN: ?PU NEEDS CPUS
14

▷ CPUs excel at serial.
▷ Parallel programmers learn to hate slow serial processing, because it
destroys scaling at an alarming rate thanks to Amdahl's Law.

▷ Any investment in speeding up an application, is easily destroyed if the
serial part is compromised — even if the serial part is only 0.001% of the
application.

▷ Even using full speed for 99.999% of compute with 20K PUs, a 1/3rd speed
serial processing finds that Amdahl's Law tells us that we’ll see no more
than 68% of the performance that we could obtain with full speed serial
processing.

▷ Amdahl's Law math: ((99999/30000)+1) / ((99999/30000)+3)

oneAPI module 1: Getting started with oneAPI 14 / 48



GOOD PLAN: ?PU NEEDS CPUS
14

▷ CPUs excel at serial.
▷ Parallel programmers learn to hate slow serial processing, because it
destroys scaling at an alarming rate thanks to Amdahl's Law.

▷ Any investment in speeding up an application, is easily destroyed if the
serial part is compromised — even if the serial part is only 0.001% of the
application.

▷ Even using full speed for 99.999% of compute with 20K PUs, a 1/3rd speed
serial processing finds that Amdahl's Law tells us that we’ll see no more
than 68% of the performance that we could obtain with full speed serial
processing.

▷ Amdahl's Law math: ((99999/30000)+1) / ((99999/30000)+3)

oneAPI module 1: Getting started with oneAPI 14 / 48



ONEAPI FOR CROSS-ARCHITECTURE PERFORMANCE
15

oneAPI module 1: Getting started with oneAPI 15 / 48



ONEAPI FOR CROSS-ARCHITECTURE PERFORMANCE
15

oneAPI module 1: Getting started with oneAPI 15 / 48



§3. HELLO DOUBLER - SIMPLE DPC++ CODING EXAMPLE



1 Programming in a Heterogeneous World

2 How oneAPI addresses our Heterogeneous World

3 Hello Doubler - simple DPC++ coding example

4 What is SYCL?

5 DevCloud - Try oneAPI easily

6 oneAPI - Why and How

7 What is Data Parallel C++?

oneAPI module 1: Getting started with oneAPI 17 / 48



"HELLO DOUBLER" DPC++
18

#include <CL/sycl.hpp>
#include <iostream>
#include <array>
#include <cstdio>
#define SIZE 1024

int main() {
std::array<int, SIZE> myArray;
for (int i = 0; i<SIZE; ++i)

myArray[i] = i;

// cl::sycl:: adds clarity for teaching
// but is not how you are likely to code...
printf("Value at start: myArray[42] is %d.\n",myArray[42]);
{
cl::sycl::queue myQ; /* use defaults today */
/* (queue parameters possible - future topic) */

cl::sycl::range<1> mySize{SIZE};
cl::sycl::buffer<int, 1> bufferA(myArray.data(), mySize);

myQ.submit([&](cl::sycl::handler &myHandle) {
auto deviceAccessorA =

bufferA.get_access<cl::sycl::access::mode::read_write>(myHandle);
myHandle.parallel_for<class uniqueID>(mySize,

[=](cl::sycl::id<1> index)
{
deviceAccessorA[index] *= 2;

}
);

});
}
printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

}

oneAPI module 1: Getting started with oneAPI 18 / 48



NAMESPACE CL::SYCL::
19

// cl::sycl:: adds clarity for teaching
// but is not how you are likely to code...
printf("Value at start: myArray[42] is %d.\n",myArray[42]);
{
cl::sycl::queue myQ; /* use defaults today */
/* (queue parameters possible - future topic) */
cl::sycl::range<1> mySize{SIZE};
cl::sycl::buffer<int, 1> bufferA(myArray.data(), mySize);

myQ.submit([&](cl::sycl::handler &myHandle) {
auto deviceAccessorA =
bufferA.get_access<cl::sycl::access::mode::read_write>(myHandle);

myHandle.parallel_for<class uniqueID>(mySize,
[=](cl::sycl::id<1> index)
{

deviceAccessorA[index] *= 2;
}

);
});

}
printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

▷ cl::sycl::

oneAPI module 1: Getting started with oneAPI 19 / 48



NAMESPACE CL::SYCL::
20

using namespace cl::sycl;

printf("Value at start: myArray[42] is %d.\n",myArray[42]);
{
queue myQ; /* use defaults today */
/* (queue parameters possible - future topic) */
range<1> mySize{SIZE};
buffer<int, 1> bufferA(myArray.data(), mySize);

myQ.submit([&](handler &myHandle) {
auto deviceAccessorA =
bufferA.get_access<access::mode::read_write>(myHandle);

myHandle.parallel_for<class uniqueID>(mySize,
[=](id<1> index)
{

deviceAccessorA[index] *= 2;
}

);
});

}
printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

▷ that's better!

oneAPI module 1: Getting started with oneAPI 20 / 48



"HELLO DOUBLER" DPC++
21

1 using namespace cl::sycl;
2
3 printf("Value at start: myArray[42] is %d.\n",myArray[42]);
4 {
5 queue myQ; /* use defaults today */
6 /* (queue parameters possible - future topic) */
7 range<1> mySize{SIZE};
8 buffer<int, 1> bufferA(myArray.data(), mySize);
9

10 myQ.submit([&](handler &myHandle) {
11 auto deviceAccessorA =
12 bufferA.get_access<access::mode::read_write>(myHandle);
13 myHandle.parallel_for<class uniqueID>(mySize,
14 [=](id<1> index)
15 {
16 deviceAccessorA[index] *= 2;
17 }
18 );
19 });
20 }
21 printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

▷ Full power of C++
▷ DPC++ extends C++ with
SYCL and more

▷ Syntax is pure C++, no new
keywords

▷ Kernels are Key Data
Parallel Programming
Construct

▷ Cross-platform portability
▷ Optimizing compilers boost
performance

▷ Full programmer control
over performance

oneAPI module 1: Getting started with oneAPI 21 / 48



"HELLO DOUBLER" DPC++
21

1 using namespace cl::sycl;
2
3 printf("Value at start: myArray[42] is %d.\n",myArray[42]);
4 {
5 queue myQ; /* use defaults today */
6 /* (queue parameters possible - future topic) */
7 range<1> mySize{SIZE};
8 buffer<int, 1> bufferA(myArray.data(), mySize);
9

10 myQ.submit([&](handler &myHandle) {
11 auto deviceAccessorA =
12 bufferA.get_access<access::mode::read_write>(myHandle);
13 myHandle.parallel_for<class uniqueID>(mySize,
14 [=](id<1> index)
15 {
16 deviceAccessorA[index] *= 2;
17 }
18 );
19 });
20 }
21 printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

▷ Full power of C++
▷ DPC++ extends C++ with
SYCL and more

▷ Syntax is pure C++, no new
keywords

▷ Kernels are Key Data
Parallel Programming
Construct

▷ Cross-platform portability
▷ Optimizing compilers boost
performance

▷ Full programmer control
over performance

oneAPI module 1: Getting started with oneAPI 21 / 48



"HELLO DOUBLER" DPC++
22

$ make doubler2
dpcpp doubler2.cpp -o doubler2

$ ./doubler2
Value at start: myArray[42] is 42.
Value at finish: myArray[42] is 84.

▷ Doubler, like other DPC++ kernels, can be mapped to all architectures.
▷ The suitability of each architecture is algorithm dependent.

oneAPI module 1: Getting started with oneAPI 22 / 48



42 DOUBLED IS 84
23

1 using namespace cl::sycl;
2
3 printf("Value at start: myArray[42] is %d.\n",myArray[42]);
4 {
5 queue myQ; /* use defaults today */
6 /* (queue parameters possible - future topic) */
7 range<1> mySize{SIZE};
8 buffer<int, 1> bufferA(myArray.data(), mySize);
9

10 myQ.submit([&](handler &myHandle) {
11 auto deviceAccessorA =
12 bufferA.get_access<access::mode::read_write>(myHandle);
13 myHandle.parallel_for<class uniqueID>(mySize,
14 [=](id<1> index)
15 {
16 deviceAccessorA[index] *= 2;
17 }
18 );
19 });
20 }
21 printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

▷ myArray[42] starts as
42

▷ afterwards it is 84

oneAPI module 1: Getting started with oneAPI 23 / 48



DPC++ PROVIDES THE MEANS!
24

▷ Doubler, like other DPC++ kernels, can be mapped to all
architectures.

▷ The suitability of each architecture is algorithm dependent.
▷ Balancing performance, portability, and productivity during
application development is a challenge we all face.

▷ DPC++ provides all of the tools required to maintain both
generic portable code, and optimized target-specific code,
using a single high-level programming language.

oneAPI module 1: Getting started with oneAPI 24 / 48



DPC++ PROVIDES THE MEANS!
24

▷ Doubler, like other DPC++ kernels, can be mapped to all
architectures.

▷ The suitability of each architecture is algorithm dependent.
▷ Balancing performance, portability, and productivity during
application development is a challenge we all face.

▷ DPC++ provides all of the tools required to maintain both
generic portable code, and optimized target-specific code,
using a single high-level programming language.

oneAPI module 1: Getting started with oneAPI 24 / 48



DPC++ PROVIDES THE MEANS!
24

▷ Doubler, like other DPC++ kernels, can be mapped to all
architectures.

▷ The suitability of each architecture is algorithm dependent.
▷ Balancing performance, portability, and productivity during
application development is a challenge we all face.

▷ DPC++ provides all of the tools required to maintain both
generic portable code, and optimized target-specific code,
using a single high-level programming language.

oneAPI module 1: Getting started with oneAPI 24 / 48



§4. WHAT IS SYCL?



1 Programming in a Heterogeneous World

2 How oneAPI addresses our Heterogeneous World

3 Hello Doubler - simple DPC++ coding example

4 What is SYCL?

5 DevCloud - Try oneAPI easily

6 oneAPI - Why and How

7 What is Data Parallel C++?

oneAPI module 1: Getting started with oneAPI 26 / 48



SYCL
27

SYCL is an industry-wide standardization effort to define
cross-platform data parallelism support for C++.
▷ pronounced `sickle' `sick ell' /"sik(@)l/
▷ cross-platform abstraction layer for data parallelism
▷ single source programming
▷ extends modern C++
▷ defined by a Khronos standards group
▷ Intel is a participant in the standards group, as are many more
▷ Most of DPC++ is already part of SYCL
▷ Intel's contributes back new additions

oneAPI module 1: Getting started with oneAPI 27 / 48



SYCL
27

SYCL is an industry-wide standardization effort to define
cross-platform data parallelism support for C++.
▷ pronounced `sickle' `sick ell' /"sik(@)l/
▷ cross-platform abstraction layer for data parallelism
▷ single source programming
▷ extends modern C++
▷ defined by a Khronos standards group
▷ Intel is a participant in the standards group, as are many more
▷ Most of DPC++ is already part of SYCL
▷ Intel's contributes back new additions

oneAPI module 1: Getting started with oneAPI 27 / 48



SYCL
27

SYCL is an industry-wide standardization effort to define
cross-platform data parallelism support for C++.
▷ pronounced `sickle' `sick ell' /"sik(@)l/
▷ cross-platform abstraction layer for data parallelism
▷ single source programming
▷ extends modern C++
▷ defined by a Khronos standards group
▷ Intel is a participant in the standards group, as are many more
▷ Most of DPC++ is already part of SYCL
▷ Intel's contributes back new additions

oneAPI module 1: Getting started with oneAPI 27 / 48



SYCL
27

SYCL is an industry-wide standardization effort to define
cross-platform data parallelism support for C++.
▷ pronounced `sickle' `sick ell' /"sik(@)l/
▷ cross-platform abstraction layer for data parallelism
▷ single source programming
▷ extends modern C++
▷ defined by a Khronos standards group
▷ Intel is a participant in the standards group, as are many more
▷ Most of DPC++ is already part of SYCL
▷ Intel's contributes back new additions

oneAPI module 1: Getting started with oneAPI 27 / 48



SYCL
27

SYCL is an industry-wide standardization effort to define
cross-platform data parallelism support for C++.
▷ pronounced `sickle' `sick ell' /"sik(@)l/
▷ cross-platform abstraction layer for data parallelism
▷ single source programming
▷ extends modern C++
▷ defined by a Khronos standards group
▷ Intel is a participant in the standards group, as are many more
▷ Most of DPC++ is already part of SYCL
▷ Intel's contributes back new additions

oneAPI module 1: Getting started with oneAPI 27 / 48



§5. DEVCLOUD - TRY ONEAPI EASILY



1 Programming in a Heterogeneous World

2 How oneAPI addresses our Heterogeneous World

3 Hello Doubler - simple DPC++ coding example

4 What is SYCL?

5 DevCloud - Try oneAPI easily

6 oneAPI - Why and How

7 What is Data Parallel C++?

oneAPI module 1: Getting started with oneAPI 29 / 48



DEVCLOUD
30

https://software.intel.com/en-us/devcloud/oneapi

oneAPI module 1: Getting started with oneAPI 30 / 48

https://software.intel.com/en-us/devcloud/oneapi


§6. ONEAPI - WHY AND HOW



1 Programming in a Heterogeneous World

2 How oneAPI addresses our Heterogeneous World

3 Hello Doubler - simple DPC++ coding example

4 What is SYCL?

5 DevCloud - Try oneAPI easily

6 oneAPI - Why and How

7 What is Data Parallel C++?

oneAPI module 1: Getting started with oneAPI 32 / 48



ONEAPI FOR CROSS-ARCHITECTURE PERFORMANCE
33

oneAPI module 1: Getting started with oneAPI 33 / 48



POWERFUL ONEAPI LIBRARIES
34

For Data-Centric Functions
▷ Key domain-specific functions to accelerate

compute intensive workloads
▷ Custom-coded for uncompromised

performance on SVMS (Scalar, Vector,
Matrix, Spatial) architectures

oneAPI module 1: Getting started with oneAPI 34 / 48



POWERFUL ONEAPI TOOLS
35

Productive debugging and performance analysis
across architectures
Intel® VTune™ Profiler
▷ Profiler to analyze CPU and accelerator

performance of compute, threading, memory,
storage, and more

Intel® Advisor
▷ Design assistant to provide advice on threading,

and vectorization

Intel®-enhanced gdb
▷ Application debugger for fast code debug on CPUs

and accelerators

oneAPI module 1: Getting started with oneAPI 35 / 48



ONEAPI TOOLKITS
36

One core toolkit
▷ Additional toolkits targeting specific

data-centric workloads
▷ Each includes oneAPI components and

complementary oneAPI ecosystem
components

▷ Ready-to-go containers and custom
installer for easy startup

https://software.intel.com/en-us/oneapi
(one stop website for all things oneAPI - software.intel.com/oneapi)

oneAPI module 1: Getting started with oneAPI 36 / 48

https://software.intel.com/en-us/oneapi
https://software.intel.com/en-us/oneapi


CROSS-ARCHITECTURE SYSTEMS TODAY, ONEAPI TODAY
37

The future of computing ishere, and it is adiversemix of scalar,
vector, matrix, and spatial architectures deployed in CPU, GPU, AI, FPGA,
and other accelerators.

▷ oneAPI unifies and simplifies programming of CPUs and
accelerators, delivering developer productivity, and full native
language performance

▷ oneAPI is based on industry standards and open specifications
to encourage ecosystem collaboration and innovation

https://software.intel.com/en-us/oneapi

oneAPI module 1: Getting started with oneAPI 37 / 48

https://software.intel.com/en-us/oneapi


§7. WHAT IS DATA PARALLEL C++?



1 Programming in a Heterogeneous World

2 How oneAPI addresses our Heterogeneous World

3 Hello Doubler - simple DPC++ coding example

4 What is SYCL?

5 DevCloud - Try oneAPI easily

6 oneAPI - Why and How

7 What is Data Parallel C++?

oneAPI module 1: Getting started with oneAPI 39 / 48



WHAT IS DPC++?
40

DPC++ implements cross-platform data parallelism support (extends C++).

▷ adheres to the SYCL specification
▷ implements cross-platform abstraction layer for data
parallelism

▷ open source implementation (github) with all features
supported

▷ utilizes Clang and LLVM
▷ product implementation, support, and tools available from
Intel

▷ DPC++ book in progress - first four chapters available (free)

oneAPI module 1: Getting started with oneAPI 40 / 48



TERMS THATWILL BE THROWN AROUND
41

▷ Single Source programmers use
▷ Fat Binaries implementations use
▷ Directed Programming programmers use

oneAPI module 1: Getting started with oneAPI 41 / 48



TERMS THATWILL BE THROWN AROUND
41

▷ Single Source programmers use
▷ Fat Binaries implementations use
▷ Directed Programming programmers use

oneAPI module 1: Getting started with oneAPI 41 / 48



TERMS THATWILL BE THROWN AROUND
41

▷ Single Source programmers use
▷ Fat Binaries implementations use
▷ Directed Programming programmers use

oneAPI module 1: Getting started with oneAPI 41 / 48



PROGRAMMING IN DPC++
42

DPC++ implements cross-platform data parallelism support (extends C++).

▷ Write `kernels'
▷ Control when/where/how they might be accelerated

oneAPI module 1: Getting started with oneAPI 42 / 48



DPC++
43

The same programming language can
support all SVMS architectures.

oneAPI module 1: Getting started with oneAPI 43 / 48



DPC++
44

Data Parallel C++
provides the features and abstraction
necessary to deliver uncompromised
performance on SVMS architectures.

oneAPI module 1: Getting started with oneAPI 44 / 48



ONEAPI TRAINING SERIES
45

▷ Module 1: Getting Started with oneAPI
▷ Module 2: Introduction to DPC++
▷ Module 3: Fundamentals of DPC++, part 1 of 2
▷ Module 4: Fundamentals of DPC++, part 2 of 2
▷ Modules 5+: Deeper dives into specific DPC++ features,
oneAPI libraries and tools

https://oneapi.com
https://software.intel.com/en-us/oneapi

https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

oneAPI module 1: Getting started with oneAPI 45 / 48

https://oneapi.com
https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1


RESOURCES
46

▷ Book (Chapters 1-4 Preview)
▷ oneAPI Toolkit(s)
▷ Training, Support, Forums,
Example Code

All available
Free

https://software.intel.com/en-us/oneapi https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

oneAPI module 1: Getting started with oneAPI 46 / 48

https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1


DEVCLOUD
47

https://software.intel.com/en-us/devcloud/oneapi

oneAPI module 1: Getting started with oneAPI 47 / 48

https://software.intel.com/en-us/devcloud/oneapi


ONEAPI TRAINING SERIES
48

▷ Module 1: Getting Started with oneAPI
▷ Module 2: Introduction to DPC++
▷ Module 3: Fundamentals of DPC++, part 1 of 2
▷ Module 4: Fundamentals of DPC++, part 2 of 2
▷ Modules 5+: Deeper dives into specific DPC++ features,
oneAPI libraries and tools

https://oneapi.com
https://software.intel.com/en-us/oneapi

https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

oneAPI module 1: Getting started with oneAPI 48 / 48

https://oneapi.com
https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

	Programming in a Heterogeneous World
	How oneAPI addresses our Heterogeneous World
	Hello Doubler - simple DPC++ coding example
	What is SYCL?
	DevCloud - Try oneAPI easily
	oneAPI - Why and How
	What is Data Parallel C++?

