ONEAPI

SINGLE PROGRAMMING MODEL TO DELIVER CROSS-ARCHITECTURE PERFORMANCE

MODULE 1
GETTING STARTED WITH ONEAPI

BEEGOLFAX
mmm RESEARCH

ONEAPI TRAINING SERIES

> Module 1: Getting Started with oneAPI
Module 2: Introduction to DPC++

Module 3: Fundamentals of DPC++, part 1 of 2
Module 4: Fundamentals of DPC++, part 2 of 2

Modules 5+: Deeper dives into specific DPC++ features,
oneAPI libraries and tools

https://oneapi.com

https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

ET™COLFAX

B am RESEARCH oneAPI module 1: Getting started with oneAPI

https://oneapi.com
https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

ﬂ Programming in a Heterogeneous World

e How oneAPI addresses our Heterogeneous World
9 Hello Doubler - simple DPC++ coding example
@ Wwhatis sycL?

e DevCloud - Try oneAPI easily

G oneAPI - Why and How

@ What is Data Parallel C++?

ET™COLFAX

B am RESEARCH oneAPI module 1: Getting started with oneAPI

RESOURCES

Preview
Chapters 1-4
Now

> Book (Chapters 1-4 Preview)

> oneAPI Toolkit(s) Data Parallel C++
> Training, Support, Forums,
Example COde gri??;:%%i:;s;wgenecusSyslems

using C++ and SYCL.

BenAshbaugh John Pennycook g%
James Brodman James Reinders QB' 7
Michael Kinsner ~ Xinmin Tian

All available

Free
—«
Apress
https://software.intel.com/en-us/oneapi https://tinyurl.com/book-dpcpp

http://tinyurl.com/oneapimodule?1

ET™COLFAX

mm RESEARCH oneAPI module 1: Getting started with oneAPI DD)

https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

§1. PROGRAMMING IN A HETEROGENEOUS WORLD

ﬂ Programming in a Heterogeneous World

oneAPI module 1: Getting started with oneAPI

DIVERSE WORKLOADS DEMAND DIVERSE ARCHITECTURES

Th.e futureisadiverse mix of scalar, vector, matrix, and spatial
architectures deployed in CPU, GPU, Al, FPGA, and other accelerators.

FPGA

W

Scalar Vector Matrix Spatial

HEE

= HESHIM oneAPI module 1: Getting started with oneAPI

CHALLENGE: PROGRAMMING IN A HETEROGENEQUS WORLD

> Diverse set of data-centric
hardware

oneAPI module 1: Getting started with oneAPI

CHALLENGE: PROGRAMMING IN A HETEROGENEQUS WORLD

> No common programming
language or APIs

oneAPI module 1: Getting started with oneAPI

CHALLENGE: PROGRAMMING IN A HETEROGENEQUS WORLD

> Inconsistent tool support
across platforms

> Proprietary solutions on
individual platforms

oneAPI module 1: Getting started with oneAPI

CHALLENGE: PROGRAMMING IN A HETEROGENEQUS WORLD

FPGA

]

Scalar Vector Matrix Spatial

> Each platform requires
unique software investment

ET™COLFAX

2m RESEARCH oneAPI module 1: Getting started with oneAPI QH[!H Wﬁi@

CHALLENGE: PROGRAMMING IN A HETEROGENEQUS WORLD
> Diverse set of data-centric
hardware

> No common programming
language or APIs

> Inconsistent tool support
across platforms

> Proprietary solutions on
individual platforms

> Each platform requires
unique software investment

FPGA

i

Spatia\

Scalar

HEE

am HEDSHM oneAPI module 1: Getting started with oneAPI W

§2. HOW ONEAPI ADDRESSES OUR HETEROGENEQUS WORLD

e How oneAPI addresses our Heterogeneous World

oneAPI module 1: Getting started with oneAPI

INTEL'S ONEAPI CORE CONCEPT

> Project oneAPI delivers a unified
programming model to simplify
development across diverse
architectures

ET™COLFAX dule 1: . d with
mm RESEARCH oneAPI module 1: Getting started with oneAPI

INTEL'S ONEAPI CORE CONCEPT

Optimized Applications

oneAPI

Optimized Middleware & Frameworks
Tools

oneAPI language & libraries

> Common developer experience
across SVMS

ET™COLFAX

mm RESEARCH oneAPI module 1: Getting started with oneAPI

INTEL'S ONEAPI CORE CONCEPT

oneAPI
Tools

> Uncompromised native high-level
language performance

ET™COLFAX

mm RESEARCH oneAPI module 1: Getting started with oneAPI

Optimized Applications

Optimized Middleware & Frameworks

oneAPI language & libraries

INTEL'S ONEAPI CORE CONCEPT

Optimized Applications

oneAPI

Optimized Middleware & Frameworks
Tools

oneAPI language & libraries

=D £ KB 3

> Support for CPU, GPU, Al,
and FPGA

ET™COLFAX

mm RESEARCH oneAPI module 1: Getting started with oneAPI

INTEL'S ONEAPI CORE CONCEPT

ET™COLFAX
mm RESEARCH

oneAPI module 1: Getting started with oneAPI

Optimized Applications

oneAPI

Optimized Middleware & Frameworks
Tools

oneAPI language & libraries

> Based on industry
standards and open
specifications

INTEL'S ONEAPI CORE CONCEPT

oneAPI
Tools

> Unified language and libraries for
expressing parallelism

ET™COLFAX

mm RESEARCH oneAPI module 1: Getting started with oneAPI

Optimized Applications

Optimized Middleware & Frameworks

oneAPI language & libraries

INTEL'S ONEAPI CORE CONCEPT

ET™COLFAX
mmm RESEARCH

Project oneAPI delivers a unified
programming model to simplify
development across diverse
architectures

Common developer experience
across SVMS

Uncompromised native high-level
language performance

Unified language and libraries for
expressing parallelism

oneAPI module 1: Getting started with oneAPI

Optimized Applications

oneAPI

Optimized Middleware & Frameworks
Tools

oneAPI language & libraries

=D £ KB 3

> Support for CPU, GPU, Al,
and FPGA

> Based on industry
standards and open
specifications

PROTECT PROGRAMMING INVESTMENTS

. e Milli
Industry Data-Centric Applications Hons

Industry Middleware & Frameworks Thousands

oneAPI Language & Libraries Investment

Protection with

“ m Open Standards
n & Specifications

EEEEE n@; for Cross Architecture
SREaE Programming

CH

mEmCoLEAX

mm RESEARCH oneAPI module 1: Getting started with oneAPI

GOOD PLAN: LET ALL LIGHTS SHINE

> Allowing all ?PUs to shine should yield better results than
programming approaches that focus on highlighting a
particular PU over all others.

oneAPI module 1: Getting started with oneAPI

GOOD PLAN: LET ALL LIGHTS SHINE

> Programmers want to write a single portable program that
uses ALL resources in the heterogeneous platform.

ET™COLFAX

B am RESEARCH oneAPI module 1: Getting started with oneAPI

GOOD PLAN: ?PU NEEDS CPUS

> CPUs excel at serial.

> Parallel programmers learn to hate slow serial processing, because it
destroys scaling at an alarming rate thanks to Amdahl's Law.

ET™COLFAX

B am RESEARCH oneAPI module 1: Getting started with oneAPI

GOOD PLAN: ?PU NEEDS CPUS

> Any investment in speeding up an application, is easily destroyed if the
serial part is compromised — even if the serial part is only 0.001% of the
application.

> Even using full speed for 99.999% of compute with 20K PUs, a 1/3rd speed
serial processing finds that Amdahl's Law tells us that we'll see no more
than 68% of the performance that we could obtain with full speed serial
processing.

> Amdahl's Law math: ((99999/30000)+1) / ((99999/30000)+3)

P EE’SHHACﬁ oneAPI module 1: Getting started with oneAPI

ONEAPI FOR CROSS-ARCHITECTURE PERFORMANCE
[Industry Middleware & Frameworks |

Industry Middleware & Frameworks

oneAPI Product

Thousands

Direct Programming API-Based Programming

Compatibility

Data
Tool

Analysis &
Parallel Debug Tools

oneAPI Language & Libraries

Protection with
Open Standards

> & Specifications
@? for Cross Architecture
Programming

@NED

ONEAPI FOR CROSS-ARCHITECTURE PERFORMANCE

Industry Middleware & Frameworks

Data Analysis &
Parallel Libraries Debug Tools

Thousands

Compatibility
Tool

oneAPI Language & Libraries

Protection with
Open Standards

& Specifications
é opooa » .
m W 86000 for Cross Architecture
00000
00000

Programming

ET™COLFAX
mmm RESEARCH

oneAPI module 1: Getting started with oneAPI

§3. HELLO DOUBLER - SIMPLE DPG++ CODING EXAMPLE

9 Hello Doubler - simple DPC++ coding example

oneAPI module 1: Getting started with oneAPI

"HELLO DOUBLER" DPC++

#include <CL/sycl.hpp>
#include <tostream>
#include <array>
#include <cstdio>
#define SIZE 1024

int main() {
std::array<int, SIZE> myArray;
for (int i = 0; i<SIZE; ++i)
myArray[i] = i;

neAPl module

// cl::sycl:: adds clarity for teaching
// but is not how you are likely to code...
printf("Value at start: myArray[42] is %d.\n",myArray[42]);

cl::sycl::queue myQ; /* use defaults today */
/* (queue parameters possible — future topic) */

cl::sycl::range<i> mySize{SIZE};
cl::sycl::buffer<int, 1> bufferA(myArray.data(), mySize);

myQ.submit ([&] (cl::sycl::handler &myHandle) {
auto deviceAccessorA =
bufferA.get_access<cl::sycl::access::mode::read_write>(myHandle);
myHandle.parallel_for<class uniqueID>(mySize,
[=1(cl::sycl::id<1> index)
{
deviceAccessorA[index] *= 2;
I
)
b

printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

NAMESPACE CL::SYCL:

// cl::sycl:: adds clarity for teaching
// but is not how you are likely to code...
printf ("Value at start: myArray[42] is %d.\n",myArray([42]);
{
cl::sycl::queue myQ; /* use defaults today */
/* (queue parameters possible - future topic) */
cl::sycl::range<i> mySize{SIZE};
cl::sycl::buffer<int, 1> bufferA(myArray.data(), mySize);

myQ.submit ([&] (cl::sycl::handler &myHandle) {
auto deviceAccessorA = > Cl::sycl::
bufferA.get_access<cl::sycl::access::mode: :read_write>(myHandle);
myHandle.parallel_for<class uniqueID>(mySize,
[=](cl::sycl::id<1> index)
{
deviceAccessorA[index] *= 2;
¥
)
b

printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

oneAPI module 1: Getting started with oneAPI

NAMESPACE CL::SYCL:

using namespace cl::sycl;

printf ("Value at start: myArray[42] is %d.\n",myArray([42]);
{
queue myQ; /* use defaults today */
/* (queue parameters possible - future topic) */
range<1> mySize{SIZE};
buffer<int, 1> bufferA(myArray.data(), mySize);

myQ.submit ([&] (handler &myHandle) {
auto deviceAccessorA = > that's better!
bufferA.get_access<access::mode::read_write> (myHa.ndle);
myHandle.parallel_for<class uniqueID>(mySize,
[=] (id<1> index)
{
deviceAccessorA[index] *= 2;
¥
)s
b;

}
printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

neAPI module 1: Getting started wit

"HELLO DOUBLER" DPC++

CONOUAWN=

using namespace cl::sycl;

printf("Value at start: myArray[42] is %d.\n",myArray([42]);
{

queue myQ; /* use defaults today */

/* (queue parameters possible - future topic) */

range<1> mySize{SIZE};

buffer<int, 1> bufferA(myArray.data(), mySize);

myQ.submit ([&] (handler &myHandle) {
auto deviceAccessorA =
bufferA.get_access<access: :mode: :read_write>(myHandle);
myHandle.parallel_for<class uniqueID>(mySize,
[=] (id<1> index)
{
deviceAccessorA[index] *= 2;

¥

b
}
printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

oneAPI module 1

> Full power of C++

> DPC++ extends C++ with
SYCL and more

> Syntax is pure C++, no new
keywords

"HELLO DOUBLER" DPC++

CONOUAWN=

using namespace cl::sycl;

printf("Value at start: myArray[42] is %d.\n",myArray([42]);
{

queue myQ; /* use defaults today */

/* (queue parameters possible - future topic) */

range<1> mySize{SIZE};

buffer<int, 1> bufferA(myArray.data(), mySize);

myQ.submit ([&] (handler &myHandle) {
auto deviceAccessorA =
bufferA.get_access<access: :mode: :read_write>(myHandle);
myHandle.parallel_for<class uniqueID>(mySize,
[=] (id<1> index)
{
deviceAccessorA[index] *= 2;
s
)3
b
I
printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

oneAPI module 1: Getting started with oneAPI

Kernels are Key Data
Parallel Programming
Construct

Cross-platform portability
Optimizing compilers boost
performance

Full programmer control
over performance

"HELLO DOUBLER" DPC++

$ make doubler2
dpcpp doubler2.cpp -o doubler2

$./doubler2
Value at start: myArray[42] is 42.
Value at finish: myArray[42] is 84.

> Doubler, like other DPC++ kernels, can be mapped to all architectures.
> The suitability of each architecture is algorithm dependent.

oneAPI module 1: Getting started with oneAPI

42 DOUBLED 15 84

OCONOU N WN =

using namespace cl::sycl;

printf("Value at start: myArray[42] is %d.\n",myArray[42]);
{

queue myQ; /* use defaults today */

/* (queue parameters possible - future topic) */

range<1> mySize{SIZE};

buffer<int, 1> bufferA(myArray.data(), mySize);

myQ.submit ([&] (handler &myHandle) {
auto deviceAccessorA =
bufferA.get_access<access::mode::read_write>(myHandle);
myHandle.parallel_for<class uniqueID>(mySize,
[=] (id<1> index)
{
deviceAccessorA[index] *= 2;
¥
)s
b;

printf("Value at finish: myArray[42] is %d.\n",myArray[42]);

neAPl module

> myArray[42] starts as
42

> afterwards itis 84

DPC++ PROVIDES THE MEANS!

> Doubler, like other DPC++ kernels, can be mapped to all
architectures.

> The suitability of each architecture is algorithm dependent.

ET™COLFAX

B am RESEARCH oneAPI module 1: Getting started with oneAPI

DPC++ PROVIDES THE MEANS!

> Balancing performance, portability, and productivity during
application development is a challenge we all face.

oneAPI module 1: Getting started with oneAPI

DPC++ PROVIDES THE MEANS!

> DPC++ provides all of the tools required to maintain both
generic portable code, and optimized target-specific code,
using a single high-level programming language.

oneAPI module 1: Getting started with oneAPI

§4. WHAT IS SYCL?

! >

@ Wwhatis sycL?

oneAPI module 1: Getting started with oneAPI

SYCL CSY CL
SYCL is an industry-wide standardization effort to define)

cross-platform data parallelism support for C++.
> pronounced sickle' “sickell' [/'sik(e)l/

= EI?SHM oneAPI module 1: Getting started with oneAPI

SYCL CSY CL
SYCL is an industry-wide standardization effort to define)

cross-platform data parallelism support for C++.

> cross-platform abstraction layer for data parallelism

= EI?SHM oneAPI module 1: Getting started with oneAPI

SYCL CSY CL
SYCL is an industry-wide standardization effort to define ')

cross-platform data parallelism support for C++.

single source programming

extends modern C++

defined by a Khronos standards group

Intel is a participant in the standards group, as are many more

v vV VvV V

= EI?SHM oneAPI module 1: Getting started with oneAPI

SYCL CSY CL
SYCL is an industry-wide standardization effort to define ')

cross-platform data parallelism support for C++.

> Most of DPC++ is already part of SYCL
> Intel's contributes back new additions

= EI?SHM oneAPI module 1: Getting started with oneAPI

SYCL CSY CL
SYCL is an industry-wide standardization effort to define ' i

cross-platform data parallelism support for C++.
> pronounced sickle' “sickell' [/'sik(e)l/
> cross-platform abstraction layer for data parallelism
> single source programming
> extends modern C++
> defined by a Khronos standards group
> Intel is a participant in the standards group, as are many more
> Most of DPC++ is already part of SYCL
> Intel's contributes back new additions

HEE

am HE.SHHACﬁ oneAPI module 1: Getting started with oneAPI

§5. DEVCLOUD - TRY ONEAPI EASILY

e DevCloud - Try oneAPI easily

oneAPI module 1: Getting started with oneAPI

DEVCLOUD

INTEL DEVCLOUD FOR ONEAPT PROJECTS

A development sandbox to develop, test, and.run your workloads across a range of Intel®-based CPUs, GPUs, and

FPGAs using oneAPI (8@ software

Sign Up for Beta

What You Can Do

()
Learn Data Parallel C++ Learn about Intel® /l\ Evaluate Workloads
N L) []
oneAPI Toolkits 1 [} 1
[1
L N
[EEETY Prototype Your Project [Build Heterogeneous
[e+] Applications
[
—— Lees

https://software.intel.com/en-us/devcloud/oneapi

oneAPI module 1: Getting started with oneAPI

https://software.intel.com/en-us/devcloud/oneapi

§6. ONEAPI - WHY AND HOW

@ oneAPI - Why and How

oneAPI module 1: Getting started with oneAPI

ONEAPI FOR CROSS-ARCHITECTURE PERFORMANCE

Industry Data-Centric Applications

Industry Middleware & Frameworks

Thousands

Millions

Direct Programming

Compatibility
Tool Parallel

Analysis &
Libraries Debug Tools
C++

oneAPI Language & Libraries

Protection with
Open Standards
& Specifications
for Cross Architecture

Programming

ET™COLFAX
mmm RESEARCH

oneAPI module 1: Getting started with oneAPI

POWERFUL ONEAPI LIBRARIES

For Data-Centric Functions EReS

> Key domain-specific functions to accelerate
compute intensive workloads

]

Scalar Vector Matrix Spatial

> Custom-coded for uncompromised
performance on SVMS (Scalar, Vector,
Matrix, Spatial) architectures

oneAPI module 1: Getting started with oneAPI

POWERFUL ONEAPI TOOLS

Productive debugging and performance analysis
across architectures
Intel® VTune™ Profiler

> Profiler to analyze CPU and accelerator
performance of compute, threading, memory,
storage, and more

Intel® Advisor

> Design assistant to provide advice on threading,
and vectorization

FPGA

Intel®-enhanced gdb

> Application debugger for fast code debug on CPUs
and accelerators Sawr Veatr

)

Spatial

oneAPI module 1: Getting started with oneAPI

ONEAPI TOOLKITS

One core toolkit

> Additional toolkits targeting specific
data-centric workloads

> Each includes oneAPI components and
complementary oneAPI ecosystem
components

> Ready-to-go containers and custom
installer for easy startup

https://software.intel.com/en-us/oneapi

(one stop website for all things oneAPI - software.intel.com/oneapi)

ET™COLFAX

m RESEARCH oneAPI module 1: Getting started with oneAPI

https://software.intel.com/en-us/oneapi
https://software.intel.com/en-us/oneapi

CROSS-ARCHITECTURE SYSTEMS TODAY, ONEAPI TODAY

The future of computingis here, and itis a diverse mix of scalar,

vector, matrix, and spatial architectures deployed in CPU, GPU, Al, FPGA,
and other accelerators.

> oneAPI unifies and simplifies programming of CPUs and
accelerators, delivering developer productivity, and full native
language performance

> oneAPl is based on industry standards and open specifications
to encourage ecosystem collaboration and innovation

https://software.intel.com/en-us/oneapi

ET™COLFAX

B o m RESEARCH oneAPI module 1: Getting started with oneAPI

https://software.intel.com/en-us/oneapi

§1. WHAT IS DATA PARALLEL C++?

Q What is Data Parallel C++?

oneAPI module 1: Getting started with oneAPI

WHAT IS DPC++?

DPC++ implements cross-platform data parallelism support (extends C++).

>

>

adheres to the SYCL specification

implements cross-platform abstraction layer for data
parallelism

open source implementation (github) with all features
supported

utilizes Clang and LLVM

product implementation, support, and tools available from
Intel

DPC++ book in progress - first four chapters available (free)

ET™COLFAX

B o m RESEARCH oneAPI module 1: Getting started with oneAPI

TERMS THAT WILL BE THROWN AROUND

> Single Source programmers use

ET™COLFAX

B am RESEARCH oneAPI module 1: Getting started with oneAPI

TERMS THAT WILL BE THROWN AROUND

> Fat Binaries implementations use

ET™COLFAX

B am RESEARCH oneAPI module 1: Getting started with oneAPI

TERMS THAT WILL BE THROWN AROUND

> Directed Programming programmers use

ET™COLFAX

B am RESEARCH oneAPI module 1: Getting started with oneAPI

PROGRAMMING IN DPC++

DPC++ implements cross-platform data parallelism support (extends C++).
> Write "kernels'
> Control when/where/how they might be accelerated

= EI?SHM oneAPI module 1: Getting started with oneAPI

DPC++

The same programming language can
support all SVMS architectures.

oneAPI module 1: Getting started with oneAPI

DPC++

Data Parallel C++
provides the features and abstraction
necessary to deliver uncompromised
performance on SVMS architectures.

oneAPI module 1: Getting started with oneAPI

ONEAPI TRAINING SERIES

> Module 1: Getting Started with oneAPI
Module 2: Introduction to DPC++

Module 3: Fundamentals of DPC++, part 1 of 2
Module 4: Fundamentals of DPC++, part 2 of 2

Modules 5+: Deeper dives into specific DPC++ features,
oneAPI libraries and tools

https://oneapi.com

https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

ET™COLFAX

B am RESEARCH oneAPI module 1: Getting started with oneAPI

https://oneapi.com
https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

RESOURCES

Preview
Chapters 1-4
Now

> Book (Chapters 1-4 Preview)

> oneAPI Toolkit(s) Data Parallel C++
> Training, Support, Forums,
Example COde gri??;:%%i:;s;wgenecusSyslems

using C++ and SYCL.

BenAshbaugh John Pennycook g%
James Brodman James Reinders QB' 7
Michael Kinsner ~ Xinmin Tian

All available

Free
—«
Apress
https://software.intel.com/en-us/oneapi https://tinyurl.com/book-dpcpp

http://tinyurl.com/oneapimodule?1

ET™COLFAX

mm RESEARCH oneAPI module 1: Getting started with oneAPI D))

https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

DEVCLOUD

INTEL DEVCLOUD FOR ONEAPT PROJECTS

A development sandbox to develop, test, and.run your workloads across a range of Intel®-based CPUs, GPUs, and

FPGAs using oneAPI (8@ software

Sign Up for Beta

What You Can Do

()
Learn Data Parallel C++ Learn about Intel® /l\ Evaluate Workloads
N L) []
oneAPI Toolkits 1 [} 1
[1
L N
[EEETY Prototype Your Project [Build Heterogeneous
[e+] Applications
[
—— Lees

https://software.intel.com/en-us/devcloud/oneapi

oneAPI module 1: Getting started with oneAPI

https://software.intel.com/en-us/devcloud/oneapi

ONEAPI TRAINING SERIES

> Module 1: Getting Started with oneAPI
Module 2: Introduction to DPC++

Module 3: Fundamentals of DPC++, part 1 of 2
Module 4: Fundamentals of DPC++, part 2 of 2

Modules 5+: Deeper dives into specific DPC++ features,
oneAPI libraries and tools

https://oneapi.com

https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

ET™COLFAX

B am RESEARCH oneAPI module 1: Getting started with oneAPI

https://oneapi.com
https://software.intel.com/en-us/oneapi
https://tinyurl.com/book-dpcpp
http://tinyurl.com/oneapimodule?1

	Programming in a Heterogeneous World
	How oneAPI addresses our Heterogeneous World
	Hello Doubler - simple DPC++ coding example
	What is SYCL?
	DevCloud - Try oneAPI easily
	oneAPI - Why and How
	What is Data Parallel C++?

